
Simulating Multi-Core
RISC-V Systems in gem5

Tuan Ta, Lin Cheng, and Christopher Batten

School of Electrical and Computer Engineering
Cornell University

2nd Workshop on Computer Architecture Research with RISC-V
June 2018

Task-Parallel System Design Space Exploration

Task-Parallel Runtimes

OpenMP, Cilk, Intel TBB, etc.

Static, Dynamic, Adaptive Task Scheduling, etc.

Work-Stealing, etc.

In-order superscalar cores

Out-of-order cores

Heterogeneous big.LITTLE system

Multi-Core Systems

Applications

Graph-processing application domain

Irregular parallelism

Ligra graph framework [J. Shun, PPoPP 2013]

Many design points to consider!

Cornell University Tuan Ta 2 / 24

What Tools Are Available in RISC-V Ecosystem?

Functional-Level Simulators: Spike & QEMU

Pros
I Very fast simulation

I Verify applications compile and work correctly

Cons
I Capture no micro-architectural details

I Not timing accurate

Cornell University Tuan Ta 3 / 24

What Tools Are Available in RISC-V Ecosystem?

RTL Simulators: Rocket & BOOM RTL models

Pros
I Provide low-level micro-architectural details

I Cycle-accurate

Cons
I Too slow to run many different simulations

. Simulate at the rate of 4,000 instructions per second

. Take 3 days to run a small application

I Limited to single-threaded application and single-core system
. Use a single-threaded proxy kernel
. Boot a full Linux image → not a practical solution!

I Limited to existing RISC-V RTL models

Cornell University Tuan Ta 4 / 24

What Tools Are Available in RISC-V Ecosystem?

FPGA

Pros
I Fast execution

I Timing accurate

I Can boot a full Linux image

Cons
I Require physical FPGA boards

I Lengthy synthesis, place and route process

I Limited to existing RISC-V RTL models

Cornell University Tuan Ta 5 / 24

Is gem5 a Solution?

What is gem5?

I Multiple ISAs

I Multiple processor models

I Multiple memory and network models

I Some advanced simulation features

I Strong support from gem5 developer and user community

Cornell University Tuan Ta 6 / 24

Is gem5 a Solution?

Initial RISC-V port in gem5 [A. Roelke, CARRV 2017]
I RV64GC

I Single-core system simulation

I System call emulation (SE) mode

Our contribution to RISC-V port in gem5 [CARRV 2018]
I Multi-core system simulation in SE mode

I RISC-V testing infrastructure in gem5

Cornell University Tuan Ta 7 / 24

Everything Is Open-Source!

% # Get all software dependencies

% sudo apt-get install scons python-dev m4 autoconf automake autotools-dev curl libmpc-dev libmpfr-dev

libgmp-dev gawk build-essential bison flex texinfo gperf libtool patchutils bc zlib1g-dev libexpat-dev

% # Download and build gem5

% cd $HOME && git clone https://gem5.googlesource.com/public/gem5 && cd gem5

% # Skip this step when this change is fully merged in upstream gem5

% git pull https://gem5.googlesource.com/public/gem5 refs/changes/26/9626/4

% # skip this step when this change is fully merged in upstream gem5

% git pull https://gem5.googlesource.com/public/gem5 refs/changes/44/9644/3

% scons build/RISCV/gem5.opt -j8

% # Download and build RISC-V GNU toolchain

% cd $HOME && git clone --recursive https://github.com/riscv/riscv-gnu-toolchain

% cd riscv-gnu-toolchain/ && mkdir ./build && cd ./build

% ../configure --prefix=$HOME/riscv-gnu-toolchain/build/
% make linux -j8

% export PATH=$PATH:$HOME/riscv-gnu-toolchain/build/bin/
% # Download and build Ligra applications

% cd $HOME && git clone https://github.com/jshun/ligra.git

% cd $HOME/ligra/ligra/
% # Modify Ligra to work with gem5

% mv ligra.h ligra.h.old

% sed '/long rounds/a int num cpu = P.getOptionIntValue("-n",1); setWorkers(num cpu);' ligra.h.old >

ligra.h

% cd $HOME/ligra/apps/
% ln -s $HOME/ligra/ligra/* .

% riscv64-unknown-linux-gnu-gcc -static -fopenmp -DOPENMP -Wall -O0 -I. -c BFS.C -o BFS.o

% riscv64-unknown-linux-gnu-g++ -static -DOPENMP -L. -o BFS BFS.o -lgomp -lpthread -ldl

% # Run BFS on gem5

% $HOME/gem5/build/RISCV/gem5.opt $HOME/gem5/configs/example/se.py --cpu-type DerivO3CPU -n 4 -c ./BFS -o

"-n 4 ../inputs/rMatGraph J 5 100" --caches

Cornell University Tuan Ta 8 / 24

We Can Explore Task-Parallel System Design Space!

Task scheduling policies

OMP-S

OMP-G

Cilk-WS

Chunk Task Work

Fixed Static No

Adaptive Dynamic No

Fixed Dynamic Yes

Size Assignment Stealing

Static scheduling in OpenMP library (OMP-S)

Guided scheduling in OpenMP library (OMP-G)

Work stealing in Cilk library (Cilk-WS)

Heterogeneous system

Out-of-order
Cores

In-order
Cores

Shared Memory

L1$ L1$ L1$ L1$

Ligra graph-processing applications

Cornell University Tuan Ta 9 / 24

We Can Explore Task-Parallel System Design Space!

BC BFS
BFSCC

BFS-Bitvector

Components
KCore MIS

PageRank

PageRankDelta Radii
Triangle

BellmanFord CF
0

1

2

3

4

5

Sp
ee

du
p

ov
er

 si
ng

le
 th

re
ad

OMP-S OMP-G Cilk-WS

I OMP-G and Cilk-WS are designed to balance workload between
heterogeneous cores

I OMP-G and Cilk-WS offered better throughput in most of Ligra
applications

I gem5 simulated all Ligra apps at the speed of 175 KIPS (vs. 4 KIPS if
using Chisel C++ RTL simulator)

Cornell University Tuan Ta 10 / 24

Multi-Core RISC-V Support in gem5

Thread-managing

system calls

Synchronization

instructions

Release
consistency

Cornell University Tuan Ta 11 / 24

Multi-Core RISC-V Support in gem5

Thread-managing

system calls

Synchronization

instructions

Release
consistency

Thread-managing system calls

I clone

I futex

. FUTEX WAIT

. FUTEX WAKE

I exit

Cornell University Tuan Ta 12 / 24

Multi-Threading in gem5 System Call Emulation

I System Call Emulation (SE)
. No OS code is simulated
. All system calls are emulated

I Software thread (SWT)
. User-level thread

I Hardware thread (HWT)
. Execution unit (e.g., CPU core)

I SWT - HWT mapping
. Done by gem5
. SWT can be mapped to and unmapped from a HWT
. HWT maps to at most one SWT at a time
. No SWT context switching

Cornell University Tuan Ta 13 / 24

clone System Call

I Spawn a new SWT

I gem5 finds a free HWT for the new SWT

I gem5 initializes and allocates resources for the new SWT
. Copy pointers to shared resources (e.g., page table) from the parent to the

child SWT
. Allocate non-shared resources (e.g., stack and thread-local storage)

I gem5 activates the HWT

I Supported RISC-V clone system call interface in gem5 SE

I Initialized RISC-V registers upon clone system call

Cornell University Tuan Ta 14 / 24

futex System Call

I Synchronize threads using user-level futex variables
. FUTEX WAIT: put calling threads into sleep
. FUTEX WAKE: wake up threads waiting on a futex variable

I gem5 maintains a list of HWTs waiting on each futex variable

I gem5 suspends a HWT when it goes to sleep

I gem5 resumes execution of a HWT when it is waken up by
FUTEX WAKE

I Supported some variants of FUTEX WAIT and FUTEX WAKE

I Fixed bugs in how HWT is suspended and resumed in all CPU models
in gem5

Cornell University Tuan Ta 15 / 24

exit System Call

I Terminate a running SWT

I gem5 cleans up micro-architectural states of the terminating SWT

I gem5 unmaps SWT from HWT and frees up the HWT

I Fixed bugs in thread termination in all CPU models in gem5

Cornell University Tuan Ta 16 / 24

Multi-Core RISC-V Support in gem5

Thread-managing

system calls

Synchronization

instructions

Release
consistency

Synchronization instructions

I AMO

I LR & SC

Cornell University Tuan Ta 17 / 24

Atomic Memory Operation Instructions

I Added new AMO memory request type to all CPU models

I AMO requests carrying AMO operations are issued to memory system
like normal LOAD and STORE requests

I Modified gem5 cache models to execute AMO operations directly in L1
caches

CPU 0 CPU 1

L1$ L1$

Shared Mem

(1) AMO request

(2) Exclusive memory fetch

(3) In-L1 AMO processing

(4) AMO response

Cornell University Tuan Ta 18 / 24

Load-Reserved & Store-Conditional Instruction

HWT 0 HWT 1

reservation lists

lr:0x100 0x100

lr:0x1000x100X

sc:0x1000x100
(succeed)

sc:0x100
(fail)

I Address reservation list per HWT
I Load-reserved

. Invalidate any active reservation of
target variable through memory
coherence bus

. Put the variable in reservation list
I Store-conditional

. Succeed if target variable is still
being reserved

. Otherwise, fail
I Livelock prevention

. Defer invalidation requests in L1
cache in a bounded period of time

Cornell University Tuan Ta 19 / 24

Multi-Core RISC-V Support in gem5

Thread-managing

system calls

Synchronization

instructions

Release
consistency

Release consistency

Cornell University Tuan Ta 20 / 24

Release Consistency

I Break amo, lr, and sc instructions into micro-operations

I Insert fence micro-operations to ensure correct memory orderings

amoadd.aq amoadd.rl amoadd.aqrl

amoadd

fence amoadd

fence

amoadd

fence

fence

micro-ops

Cornell University Tuan Ta 21 / 24

Functional Validation

Assembly testing

C/C++ unit testing

I Did not exist in gem5 before

I Single-threaded testing
. Ported RISC-V assembly test suite into gem5

I Multi-threaded testing
. Built a minimal threading library in assembly
. Tested individual system calls
. Tested individual synchronization instructions

I pthread functionality testing
. Detected missing functionality used by GNU

pthread library
. Tested commonly used pthread functions

(e.g., pthread create, pthread join,
pthread mutex lock, etc.)

Cornell University Tuan Ta 22 / 24

Timing Validation

I CPU models in gem5 are generic and NOT validated against an actual
microarchitecture

I We validated gem5’s multiplier model against an iterative multiplier in
Rocket chip
. Used a micro-benchmark that executed 500 mul instructions back-to-back
. No RAW dependency between these mul instructions
. No loop to minimize interference from branch predictor
. Warmed up instruction cache
. Measured the CPI of the 500 mul instruction sequence in both gem5 and

Rocket models
. Adjusted gem5 multiplier’s configuration

I Similar approach can be applied to validate other HW units (e.g.,
floating point unit, branch predictor, etc.)

Cornell University Tuan Ta 23 / 24

Take-Away Point

I Multi-threaded RISC-V binaries can run on gem5 out of the box

I gem5 is a good cycle-level modeling tool for efficient early system
design space exploration

I RISC-V port development in gem5
. Initial RISC-V port in gem5 [A. Roelke, CARRV 2017]
. Our contribution to RISC-V port in gem5 [CARRV 2018]
. Future contributions from RISC-V and gem5 community ...

This work was partially supported by the NSF, AFOSR, SRC, and donations
from Intel

Cornell University Tuan Ta 24 / 24

