
Architectural Specialization for
Inter-Iteration Loop Dependence Patterns

Shreesha Srinath, Berkin Ilbeyi, Mingxing Tan, Gai Liu
Zhiru Zhang, Christopher Batten

Computer Systems Laboratory
School of Electrical and Computer Engineering, Cornell University

1 Abstract

Hardware specialization is an increasingly common technique to improve
performance and energy efficiency in spite of the diminished benefits of technology
scaling. We are pursuing a single-ISA heterogeneous architecture called explicit loop
specialization (XLOOPS) that transparently integrates general-purpose processors
(GPPs) and specialized loop accelerators. XLOOPS supports a variety of
inter-iteration data- and control-dependence patterns for both single and nested
loops. The XLOOPS hardware/software abstraction requires only lightweight changes
to a general-purpose compiler to generate XLOOPS binaries and enables executing
these binaries on: (1) traditional microarchitectures with minimal performance
impact, (2) specialized microarchitectures to improve performance and/or energy
efficiency, and (3) adaptive microarchitectures that can seamlessly migrate loops
between traditional and specialized execution. We evaluate XLOOPS using a
vertically integrated research methodology and show compelling performance and
energy efficiency improvements compared to both simple and comple GPPs.

2 Motivation

Computer architects have long realized the importance of focusing on the key loops
that often dominate application performance. This has led to a diverse array of
specialized hardware for exploiting loop dependence patterns. In this work, we focus
on architectural specialization for inter-iteration loop dependence patterns.

inst0
inst1
inst2
inst3
...
branch

Iteration
0

inst0
inst1
inst2
inst3
...
branch

Iteration
1

inst0
inst1
inst2
inst3
...
branch

Iteration
2

inst0
inst1
inst2
inst3
...
branch

Iteration
3

inst0
inst1
inst2
inst3
...
branch

Iteration
n-1

Inter-iteration data-dependence patterns include:

. Loops with no inter-iteration dependences

. Loops with inter-iteration dependences encoded through registers and/or memory

. Loops that can execute in any order as long as updates to memory appear atomic

Inter-iteration control-dependence patterns include:

. Loops that terminate after comparing induction variable to loop-invariant bound

. Loops that terminate based on a data-dependent-exit condition

. Loops that can monotonically increase the loop bound during the loop’s execution

3 XLOOPS Compiler

We implemented an LLVM-based compiler framework that can compile
pragma-annotated application kernels drawn from several benchmark suites and our
own custom benchmarks.

Floyd-Warshall Shortest Path Algorithm

for (int k = 0; k < n; k++)

#pragma xloops ordered

for (int i = 0; i < n; i++)

#pragma xloops unordered

for (int j = 0; j < n; j++)

path[i][j] = min(path[i][j], path[i][k] + path[k][j]);

XLOOPS Compilation Flow

clang
C++

program
opt

LLVM
IR

llc
LLVM
IR*

Assembly
code

GNU
as & ld

XLOOPS
Binary

The XLOOPS compiler includes analysis passes to determine the type of
inter-iteration data-dependence and control-dependence patterns.
Register-dependence testing is implemented by analyzing the use-definition chains
through the PHI nodes, and memory-dependence testing is implemented using
well-known dependence techniques such as ZIV/SIV/MIV tests.

4 XLOOPS Instruction Set

The XLOOPS instruction set is carefully designed to enable efficient execution on
both traditional general-purpose processors (GPPs) and specialized
microarchitectures. The XLOOPS instructions encode the notion of a parallel loop
body and the inter-iteration data- and control-dependence patterns as shown below.

xloop.uc rI, rN, L unordered-concurrent
xloop.ua rI, rN, L unordered-atomic
xloop.or rI, rN, L ordered through registers
xloop.om rI, rN, L ordered through memory
xloop.*.db rI, rN, L dynamic-loop-bound

addiu.xi X, imm encode mutual induction variables
addu.xi rT encode mutual induction variables

Code and Assembly Examples

#pragma xloop unordered

for (i=0; i<N; i++)

C[i] = A[i] * B[i]

L:

lw r2, 0(rA)

lw r3, 0(rB)

mul r4, r2, r3

sw r4, 0(rC)

addiu.xi rA, 4

addiu.xi rB, 4

addiu.xi rC, 4

addiu r1, r1, 1

xloop.uc r1, rN, L

#pragma xloop ordered

for (X=0, i=0; i<N; i++)

X += A[i]; B[i] = X

L:

lw r2, 0(rA)

addu rX, r2, rX

sw rX, 0(rB)

addiu.xi rA, 4

addiu.xi rB, 4

addiu r1, r1, 1

xloop.or r1, rN, L

#pragma xloop ordered

for (i=K; i<N; i++)

A[i] = A[i] * A[i-K]

move r1, rK

sll r2, rK, 0x2

addu r3, rA, r2

L:

lw r4, 0(r3)

lw r5, 0(rA)

mul r6, r4, r5

sw r6, 0(r3)

addiu.xi r3, 4

addiu.xi rA, 4

addiu r1, r1, 1

xloop.om r1, rN, L

#pragma xloop atomic

for (i=0; i<N; i++)

B[A[i]]++; D[C[i]]++

L:

lw r6, 0(rA)

lw r7, 0(r6)

addiu r7, r7, 1

sw r7, 0(r6)

addiu.xi rA, rA, 4

lw r6, 0(rC)

lw r7, 0(r6)

addiu r7, r7, 1

sw r7, 0(r6)

addiu.xi rC, rC, 4

addiu r1, r1, 1

xloop.ua r1, rN, L

5 XLOOPS Microarchitecture

A GPP augmented with a loop-pattern specialization unit (LPSU) that contains a lane
management unit and a number of decoupled lanes for executing iterations in parallel.
The GPP and the lanes in the LPSU share long-latency functional units (LLFUs) and
data-memory ports.

Lane
3

Lane
1

Lane RF
24 × 32b

2r2w

Inst Buf
128×

LSQ
16×

CIB 8×

Lane RF
24 × 32b

2r2w

Inst Buf
128×

LSQ
16×

CIB 8×

Lane RF
24 × 32b

2r2w

Inst Buf
128×

LSQ
16×

CIB 8×

Lane
0

GPR RF
32 × 32b

2r2w

GPP

SLFU SLFU SLFU

LLFU

D$ Request/Response Crossbar

L1 I$ 16 KB

L2 Request and Response Crossbars

L1 D$ 16 KB

32b32b

SLFU

IDQ

DBN

Lane Management Unit

IDQ IDQ

. Traditional Execution – An xloop

instruction is executed as a
conditional branch, and an xi

instruction is executed as simple
addition.

. Specialized Execution –
Specialized execution occurs in two
phases: scan phase where the GPP
scans the xloop and configures the
LPSU and specialized execution
phase where the LPSU executes
the iterations in parallel.

. Adaptive Execution – Adaptive
execution mechanism that adds two
phases, GPP profiling phase and
LPSU profiling phase to determine
the best performing
microarchitecture and adaptively
migrates the loop execution.

6 Cycle-Level Evaluation

We modified a gem5+McPAT-1.0 simulation framework to model both in-order and
out-of-order processors augmented with an LPSU. We compare XLOOPS to three
baseline GPPs: a simple single-issue in-order processor (io), a moderate 2-way
out-of-order superscalar processor (ooo/2), and an aggressive 4-way out-of-order
superscalar processor (ooo/4). We augmented each baseline GPP with an LPSU to
create three XLOOPS configurations: io+x, ooo/2+x, and ooo/4+x.

Performance Results

We observe that specialized execution always benefits the in-order processor. For a
total of 25 application kernels, specialized execution performs better for 18 kernels
compared to ooo/2, and performs better for 12 kernels compared to ooo/4.

rg
b2

cm
yk

-u
c

sg
em

m
-u

c

ss
ea

rc
h-

uc

sy
m

m
-u

c

vi
te

rb
i-u

c

w
ar

-u
c

ad
pc

m
-o

r

co
va

r-o
r

di
th

er
-o

r

km
ea

ns
-o

r

sh
a-

or

sy
m

m
-o

r

dy
np

ro
g-

om

kn
n-

om

ks
ac

k-
sm

-o
m

ks
ac

k-
lg
-o

m

w
ar

-o
m

m
m

-o
rm

st
en

ci
l-o

rm

bt
re

e-
ua

hs
or

t-u
a

hu
ffm

an
-u

a

rs
or

t-u
a

bf
s-

uc
-d

b

qs
or

t-u
c-

db

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S
p

e
e

d
u

p
 N

o
rm

a
liz

e
d

 t
o

 i
o

ooo/2 ooo/4 ooo/2+x

rg
b2

cm
yk

-u
c

sg
em

m
-u

c

ss
ea

rc
h-

uc

sy
m

m
-u

c

vi
te

rb
i-u

c

w
ar

-u
c

ad
pc

m
-o

r

co
va

r-o
r

di
th

er
-o

r

km
ea

ns
-o

r

sh
a-

or

sy
m

m
-o

r

dy
np

ro
g-

om

kn
n-

om

ks
ac

k-
sm

-o
m

ks
ac

k-
lg
-o

m

w
ar

-o
m

m
m

-o
rm

st
en

ci
l-o

rm

bt
re

e-
ua

hs
or

t-u
a

hu
ffm

an
-u

a

rs
or

t-u
a

bf
s-

uc
-d

b

qs
or

t-u
c-

db
0.0

0.2

0.4

0.6

0.8

1.0

R
a
ti
o
 o

f
S

ta
lls

 a
n
d
 S

q
u
a
s
h
e
s

RAW

MEM

LLFU

RD

MD

LSQ

Misc . Sharing the LLFUs does
not significantly hurt
specialized execution.

. Sharing the memory port
could improve the
performance for some
kernels.

. Inter-iteration critical
path restricts
performance of
xloop.or kernels.

. Input datasets influence
performance of
xloop.{om,orm,ua}
kernels.

rg
b2

cm
yk

-u
c

sg
em

m
-u

c

ss
ea

rc
h-

uc

sy
m

m
-u

c

vi
te

rb
i-u

c

w
ar

-u
c

ad
pc

m
-o

r

co
va

r-o
r

di
th

er
-o

r

km
ea

ns
-o

r

sh
a-

or

sy
m

m
-o

r

dy
np

ro
g-

om

kn
n-

om

ks
ac

k-
sm

-o
m

ks
ac

k-
lg
-o

m

w
ar

-o
m

m
m

-o
rm

st
en

ci
l-o

rm

bt
re

e-
ua

hs
or

t-u
a

hu
ffm

an
-u

a

rs
or

t-u
a

bf
s-

uc
-d

b

qs
or

t-u
c-

db
0.0

0.5

1.0

1.5

2.0

2.5

S
p
e
e
d
u
p
 N

o
rm

a
liz

e
d
 t
o
 o

o
o
/4

specialized adaptive . Overheads of profiling
and work migration
result in only minimal
performance
degradation.

. xloop.or kernels
benefit from traditional
execution when there is
high intra-iteration ILP.

. Adaptive work migration
helps
xloop.{om,orm,ua}
kernels when there is
limited MLP.

Energy Efficiency vs. Performance Results

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

	
(a) io+x

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 E

ff
ic

ie
n
c
y

0.5 1.0 1.5 2.0 2.5 3.0

Normalized Performance
(b) ooo/2+x

specialized adaptive

0.5 1.0 1.5 2.0 2.5

	
(c) ooo/4+x

Specialized execution adds minimal energy overhead and results in increased
performance for on io+x. Specialized execution is more energy efficient for ooo/2+x
and ooo/4+x.

7 Case Studies

We explored the microarchitectural design space by adding limited vertical
multi-threading, scaling the number of lanes, scaling shared resources, and
increasing the per-lane LSQ entries.

Microarchitectural Case Study

sgemm-uc viterbi-uc covar-or kmeans-or btree-ua1

2

3

4

5

6

7

8

S
p
e
e
d
u
p
 N

o
rm

a
liz

e
d
 t
o
 i
o

ooo/4

ooo/4+x4

ooo/4+x4+t

ooo/4+x8

ooo/4+x8+r

ooo/4+x8+r+m

. Limited vertical multi-threading
and increased lanes only helps
for few kernels.

. Doubling shared resources
helps to reduce memory
contention and LLFU structural
hazards.

. Scaling resources does not
help overcome inter-iteration
register dependences.

Application Case Studies

. Hand-optimizing select xloop.or kernels to reduce the cross-iteration iteration
critical path improves performance by 50–70%.

. Simply annotating serial versions of the kernels often performs better than code
with significant loop transformations which shows that XLOOPS allows
ease-of-programmability without sacrificing performance.

8 RTL/VLSI Evaluation

We implemented a register-transfer-level (RTL) model for a basic LPSU that supports
xloop.uc instructions. We target a 40 nm TSMC process using a Synopsys ASIC
CAD toolflow: VCS for RTL simulation, DesignCompiler for synthesis, IC Compiler for
place-and-route, and PrimeTime for power analysis.

DCache
16KB SRAM for Cache Lines

DCache
Tags

ICache
Tags

ICache
16KB SRAM for Cache Lines

L0
Instr

Buffer

L0
Instr

Buffer

L0
Instr

Buffer

L0
Instr

Buffer

Loop Pattern
Specialization Unit

Scalar
Processor

32b IEEE
Floating Point Unit

32b Integer
Mul/Div Unit

. Total area of the LPSU design is
0.36 mm2 which is only 43%
larger than the in-order GPP
(0.25 mm2).

. Sharing the LLFUs and
data-memory port is a key design
decision that results in incurring
minimal area overheads.

. Scaling experiments show that
area overhead of a given LPSU
design roughly increases linearly
with the number of lanes
(≈10%).

1.0 1.5 2.0 2.5 3.0

Performance

1.0

1.5

2.0

2.5

E
n

e
rg

y
 e

ff
ic

ie
n

c
y

bfs-uc

dither-uc

rgb2cmyk-uc

sgemm-uc

viterbi-uc

war-uc

. Specialized execution improves
performance by 2.4–4× and
energy efficiency by 1.6–2.1×.

. Accessing instruction buffer is
cheaper by a factor of ten
compared to accessing the
instruction cache.

. McPAT results are relatively
conservative which motivates
RTL implementation of other
patterns.

9 Acknowledgments

This work was supported in part by NSF CAREER Award #1149464, NSF XPS Award
#1337240, a DARPA Young Faculty Award, and donations from Intel Corporation,
Synopsys, Inc, and Xilinx, Inc. The authors acknowledge and thank Pol Rosello and
Paul Jackson for their help in writing XLOOPS application kernels, Christopher Torng
for his help bringing up the gem5 simulation framework, Aadeetya Shreedhar for his
help in bringing up traditional execution on gem5, and Derek Lockhart for developing
the Python hardware modeling framework used in the cycle-level model of the LPSU.

Publication: Appears in the Proceedings of the 47th Int’l Symp. on Microarchitecture (MICRO-47), Dec. 2014. URL: http://www.csl.cornell.edu/~cbatten/pdfs/srinath-xloops-micro2014.pdf Contact Author: Shreesha Srinath, 364 Upson Hall, Ithaca, NY 14853, ss2783@cornell.edu

