
Analysis of Application-Aware On-Chip Routing
under Traffic Uncertainty

Nithin Michael, Milen Nikolov, Ao Tang, G. Edward Suh, Christopher Batten
School of Electrical and Computer Engineering, Cornell University, Ithaca, NY

{nm373,mvn22,at422,gs272,cbatten}@cornell.edu

ABSTRACT
Application-aware routing exploits static knowledge of an applica-
tion’s traffic pattern to improve performance compared to general-
purpose routing algorithms. Unfortunately, traditional approaches
to application-aware routing cannot efficiently handle dynamic
changes in the traffic pattern limiting its usefulness in practice. In
this paper, we study application-aware routing under traffic uncer-
tainty. Our problem formulation allows an application to statically
specify an uncertainty set of traffic patterns that each occur with a
given probability, and our goal is to find a single set of combined
routes that will enable high-performance across all of these traffic
patterns. We show how efficient combined routes can be found for
this problem using convex optimization. These combined routes
are optimal when the performance for every traffic pattern using
the combined routes is the same as the performance using routes
that are specialized for just that traffic pattern. We derive necessary
and sufficient conditions for when our optimization framework will
find optimal combined routes. We use theoretical and numerical
analysis for the important class of permutation traffic patterns to
quantify how often optimal combined routes exist and to determine
the performance loss when optimal combined routes are infeasi-
ble. Finally, we use a cycle-level simulator that includes realistic
pipeline latencies, arbitration, and buffered flow-control to study
the latency and throughput of combined routes compared to spe-
cialized routes and routes generated using general-purpose routing
algorithms. The theoretical analysis, numerical analysis, and simu-
lation results in this paper provide a first step towards more flexible
application-aware routing.

Categories and Subject Descriptors
C.3 [Peformance of Systems]; C.2.2 [Computer-Communication
Networks]: Network Protocols—routing protocols
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1. INTRODUCTION
Most routing algorithms proposed for on-chip networks are

general-purpose algorithms, since they are designed to perform
well over a wide-range of applications. They are either completely
oblivious to the application’s traffic pattern (e.g., dimension or-
dered routing, ROMM [11], O1TURN [13]) or they dynamically
adapt to an application’s traffic pattern through indirect local in-
formation about the network’s global performance (e.g., minimal
adaptive routing [7], GOAL [17]). If the application’s traffic pat-
tern is known statically, then application-aware routing can poten-
tially achieve better performance compared to general-purpose al-
gorithms. In on-chip networks, application-aware routes are usually
determined by either solving a mixed-integer linear program to gen-
erate single-path routes [9], or by solving the optimal-routing multi-
commodity flow problem [18] following earlier work done for gen-
eral networks [2, 5]. We call this the optimal specialized routing
problem since the goal is to find the optimal routes for a specific
traffic pattern. These routes are then used to configure the on-chip
network before executing the application. Single-path routes can
use source-routing or table-based routing, while multi-path routes
require table-based routing and per-router split-flow management.
Multi-path routes offer increased network performance but also
require more complicated hardware. Although application-aware
multi-path routes are more common in wide-area-networks, they
are an interesting research direction for on-chip networks and are
the focus of this paper.

Unfortunately, application-aware routing cannot efficiently han-
dle dynamic changes in the traffic pattern, and this is a serious limi-
tation for modern workloads which often include many application
phases [14, 15]. Each application phase exhibits significantly dif-
ferent behavior than other phases, and thus each application phase
is characterized by a unique network traffic pattern. Application
phases can last for thousands to millions of cycles. In this work,
we assume that the phase traffic patterns are known statically, and
that the sequence of application phases is either known statically or
is determined dynamically at runtime. In other words, we have an
uncertainty set of traffic patterns (one per application phase) each
of which can occur with a given probability. The traffic patterns
in the uncertainty set and the corresponding probabilities of occur-
rence are usually obtained through static analysis or by profiling the
application of interest.

Given the uncertainty set, one approach to application-aware
routing is to find the optimal network routes for each application
phase, and then reconfigure the network at runtime before each
phase. However, the cost of detecting application phases and re-
configuring the network can be high. We define the combined op-
timal routing problem as finding a single set of routes to be used
across all application phases that results in the same performance or
close to the same performance as if we used specialized routes for
each application phase. Naive approaches to this problem include



heuristically combining the optimal specialized routes for each ap-
plication phase into a single set of routes, or combining the traffic
patterns for all application phases into a single traffic pattern and
solving a unified optimal-routing multi-commodity flow problem.
We will show that neither of these naive approaches is optimal. In-
stead, we formulate the problem as a convex optimization problem
(Section 2), and we use theoretical analysis (Section 3), numerical
analysis (Section 4), and simulation results (Section 5) to illustrate
that this formulation produces optimal solutions when possible and
produces nearly-optimal solutions when the optimal solutions are
infeasible.

2. OPTIMAL ROUTING UNDER
TRAFFIC UNCERTAINTY

To put the problem that we are trying to solve in context and to in-
troduce the notation used in the paper, we first describe the optimal
routing problem for a single traffic pattern and its well-understood
formulation as a convex optimization problem. We then discuss the
more general combined optimal routing problem and illustrate how
it can also be formulated as a similar convex optimization problem.

2.1 Specialized Optimal Routing Problem
An on-chip network interconnects terminals through a set of

routers and unidirectional point-to-point channels (links). For this
work, we focus on direct networks where there is one router per
terminal, and we call the combination of a router and a terminal a
node. Traffic patterns can be modeled by the communication be-
tween the different nodes. We denote the number of nodes in the
network as N and the number of links as L. The capacities of the
links are represented by C ∈ RL. First, we define a few terms that
will help us with the mathematical formulation of the problem.

Traffic Matrix/Pattern (D) – The traffic matrix D ∈ RN×N speci-
fies the traffic requirements of the application. Each entry D(s,d)
represents the desired rate of data transfer from node s to node d
and each such source-destination pair is said to constitute a net-
work flow. We suppose that there are F non-zero flows in each
traffic matrix, and we label the flow from s to d as the tuple 〈s,d〉.

Incidence Matrix (A) – The flow constraints imposed by the topol-
ogy of the network are captured by its incidence matrix A∈RN×L

which is defined as follows,

A(i, j) =


+1, if link j is directed to node i
−1, if link j is directed away from node i
0, otherwise.

Link Rates (Y ) – Y ∈ RL×F represents the rate on each link due
to each flow in the traffic matrix. It is easy to see that solving
for the link rates for each flow specifies the route the flow takes
through the network. We also define γ = ∑

F
j=1 Y j as the vector

of the total rate on each link required by the traffic matrix where
Y j represents the link rates corresponding to the flow j.

Cost Function ( f ) – We will use the following cost function.

f (γ) =
L

∑
l=1

γ(l)
C(l)− γ(l)

(1)

With this formula, the cost function becomes the average num-
ber of packets in the system based on the hypothesis that each

queue behaves as an M/M/1 queue of packets. Although this as-
sumption is violated in real networks, the cost function described
above provides a useful measure of performance in practice, be-
cause it expresses qualitatively the idea that congestion arises
when the total rate on a link approaches its capacity as pointed
out in [1]. Other measures of congestion include the maximum
link utilization, but we do not consider them since a computa-
tional study has shown that the choice of the objective function
between maximum link utilization and average number of pack-
ets in the network does not significantly impact the performance
when used for routing optimization [19].

As noted earlier, we call the optimal routing problem for a single
traffic matrix the specialized optimal routing problem, and it can be
formulated as follows,

minimize
Y

f (γ)

subject to AY = D,

F

∑
j=1

Y j ≤C,

Y ≥ 0.

(2)

where the matrix D ∈ RN×F is obtained from the traffic matrix D
as follows,

D(l,sd) =


+D(s,d), if l = d for the flow 〈s,d〉
−D(s,d), if l = s for the flow 〈s,d〉
0, otherwise.

The above formulation is a classic convex optimization problem
and therefore can be solved efficiently to find the specialized opti-
mal routes for the traffic matrix D.

2.2 Combined Optimal Routing Problem
Specialized routes are tuned for a single traffic pattern, but real

applications often include a sequence of application phases each
with their own traffic pattern. In other words, we have an uncer-
tainty set D = {D1, . . . ,DM} of M traffic patterns that occur with
probabilities P1, . . . ,PM . As noted earlier, we define the combined
optimal routing problem as follows: find a single set of routes that
enables the same performance or close to the same performance on
each traffic pattern as if we used specialized routes for each traffic
pattern. If the combined routes achieve the same performance as
the specialized routes on each traffic pattern we call them optimal
combined routes. Combined routes will enable us to configure the
on-chip network once, and achieve optimal or near-optimal perfor-
mance during all application phases. Fig. 1 illustrates the combined
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Figure 1: Specialized and Combined Routes for for Traffic Ma-
trices DA and DB – DA(i, j) = DB(i, j) = 0 except for DA(0,3) =
DA(0,2) = DB(0,1) = DB(1,2) = 1.
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Figure 2: Specialized and Combined Routes for Traffic Matri-
ces DA and DC – DA(i, j) = DC(i, j) = 0 except for DA(0,3) =
DA(0,2) = DC(0,2) = DC(2,1) = 1.

0 1

23

0 1

23

0 1

23

0 1

23

A
A

D D DA A
D D A

DA

(a) (b) (c) (d)

Figure 3: Specialized and Combined Routes for Traffic Matri-
ces DA and DD – DA(i, j) = DC(i, j) = 0 except for DA(0,3) =
DA(0,2) = DD(1,3) = DD(1,2) = 1.

optimal routing problem for a four-node ring network and two traf-
fic patterns, DA and DB, each with two flows. Note that the example
(and the other examples in this section) use single-path routing to
simplify the discussion, but the illustrated concepts are common
across both optimal single-path and multi-path routing. Fig. 1a and
Fig. 1b illustrate optimal specialized routes for DA and DB respec-
tively, and Fig. 1c illustrates combined routes for the uncertainty
set containing DA and DB assuming each traffic pattern occurs with
equal probability. Note that since the two traffic patterns have no
flows in common, the optimal combined routes are simply the com-
bination of the specialized routes for each traffic pattern. We can
configure the four routers once with the routes show in Fig. 1c
and we will achieve optimal performance during both application
phases.

Given this example, a naive approach to the combined optimal
routing problem is to simply solve the specialized optimal routing
problem for each traffic matrix in the uncertainty set and then merge
the resulting routes to create the combined routes. Unfortunately,
this approach does not robustly handle flows that are shared across
multiple traffic matrices. For example, Fig. 2a and Fig. 2b show
the optimal specialized routes for two traffic patterns, DA and DC.
The specialized route for flow 〈0,2〉 is different for the two traffic
patterns, and thus it is unclear which one to choose when combin-
ing the specialized routes. In Fig. 2c, we choose the specialized
route from the solution to DA, while in Fig. 2d, we choose the
specialized route from the solution to DC. The former results in
optimal combined routes, while the latter will result in reduced per-
formance when executing traffic pattern DA since the link between
node 0 to 3 is more heavily loaded. In larger network topologies
with more complicated traffic patterns, it is not clear how to effec-
tively combine optimal specialized routes. The key problem with
this approach is that it considers the traffic matrices in the uncer-
tainty set in isolation without considering their interaction when
combining routes.

Another naive approach is to weight each element in each traffic
matrix in the uncertainty set by the probability of that traffic matrix
occurring and sum the corresponding elements across all traffic ma-
trices. We can then solve the specialized optimal routing problem

for this combined traffic matrix. Unfortunately, some solutions for
the combined traffic matrix result in non-optimal combined routes.
For example, Fig. 3a and Fig. 3b show the specialized routes for two
traffic patterns, DA and DD. There are no shared flows, so combin-
ing DA and DD into a single traffic matrix is straightforward. Fig. 3c
and Fig. 3d show two possible solutions to the specialized optimal
routing problem for the combined traffic matrix. The former results
in optimal combined routes, while the latter will result in reduced
performance when executing traffic pattern DA as well as DD since
the links connecting node 0 to node 3 and node 1 to node 2 re-
spectively will be more heavily loaded. The key problem with this
approach is that a single combined traffic matrix implies that flows
from all traffic patterns in an uncertainty set happen simultaneously,
but our problem formalation only uses a single traffic pattern during
each application phase.

These examples illustrate that the key challenge in solving the
combined optimal routing problem is creating a unified optimiza-
tion framework that can determine both the specialized routes for
each traffic pattern and the way these specialized routes interact
to determine optimal combined routes. This is true for both single-
path or multi-path routes. Our approach is to design an optimization
problem that minimizes the expected cost function across all traffic
matrices in the uncertainty set. In addition, the combined routes
have to satisfy the requirements of every traffic matrix in the un-
certainty set simultaneously. This means that if there is a flow that
is shared across multiple traffic matrices, then the route computed
for it should be the same for each of those traffic matrices. It is not
immediately clear whether we can capture this intuitive constraint
in terms of a convex constraint that will let us set up a convex opti-
mization problem. Fortunately, the following theorem says that we
can do precisely that.

Theorem 1. Suppose that D1 and D2 both have a flow 〈s,d〉 and
that Y 〈s,d〉1 and Y 〈s,d〉2 are the corresponding link rates. Then the
route taken by the flow 〈s,d〉, as specified by the link rates, is
the same for both traffic patterns if and only if Y 〈s,d〉1 /D1(s,d) =

Y 〈s,d〉2 /D2(s,d) where Di(s,d) represents the demand from s to d
for traffic pattern Di.

Proof. Intuitively, the route for a flow 〈s,d〉 can be uniquely rep-
resented by how the flow splits at the intermediate nodes between
the source and the destination. These split ratios indicate the route
that one unit of traffic will take through the network from source
to destination. We know that link rates can be uniquely determined
from these node-based split ratios [5]. Since a route can be uniquely
specified by node-based split ratios, it is easy to see that if the routes
are the same between s and d for both D1 and D2 then the normal-
ized rates on each link of the network will also be the same, i.e.,
Y 〈s,d〉1 /D1(s,d) = Y 〈s,d〉2 /D2(s,d).

Now suppose that Y 〈s,d〉1 /D1(s,d) = Y 〈s,d〉2 /D2(s,d). This im-
plies that the normalized inflow into each node of the network and
the normalized outgoing rates from each node are the same for both
traffic patterns. So the split ratios at each node are the same for
the flow between s and d for both D1 and D2. Since at each node,
the split ratios corresponding to a flow completely define the route
taken by the flow through the network, we can conclude that the
route taken by flow 〈s,d〉 is the same for both traffic patterns.

Now we can define the optimal routing problem when there is
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Figure 4: Specialized and Combined Routes for Traffic Matri-
ces DA and DE – DA(i, j) = DE(i, j) = 0 except for DA(0,3) =
DA(0,2) = DE(0,2) = DE(1,2) = 1.

uncertainty in the traffic pattern as follows,

minimize
{Y1,Y2,...,YM}

M

∑
i=1

pi f (γi)

subject to FYi = Di, i = 1,2, . . . ,M

Fi

∑
j=1

Y j
i ≤C, i = 1,2, . . . ,M

Yi ≥ 0, i = 1,2, . . . ,M

Y 〈s,d〉i /Di(s,d) = Y 〈s,d〉j /D j(s,d)

if flow 〈s,d〉 is in both Di and D j.

(3)

Solving the above optimization problem is guaranteed to find the
optimal combined routes if they exist. Suppose that there exists
optimal combined routes for an uncertainty set D = {D1, . . . ,DM}
and that the solution to Eq. 3 does not correspond to these routes.
We can then show that a contradiction results, since selecting the
optimal combined routes will further decrease the cost function in
Eq. 3 as the f (γi) corresponding to each Di is minimized by the
optimal combined routes by definition.

But there are still cases where it is simply not possible to find
optimal combined routes. Fig. 4a and Fig. 4b illustrate the opti-
mal specialized routes for two traffic matrices, DA and DE . Fig. 4c
and Fig. 4d illustrate two solutions that are similar in spirit to what
might be found using Eq. 3 (remember that for simplicity the ex-
amples in this section are for single-path routing, but our analysis
is for general multi-path routing). Unfortunately, neither solution
is optimal since both solutions result in more heavily loaded links
compared to the optimal specialized routes. In this case, recon-
figuring the network before each application phase would result in
higher performance than using a single set of combined routes but
perhaps this will not be necessary if the combined routes are close
to optimal. The rest of the paper uses theoretical analysis, numer-
ical analysis, and simulations to answer three key questions: (1)
When are optimal combined routes feasible? (2) How often is this
condition satisfied for different uncertainty set sizes? and (3) When
optimal combined routes are not feasible, what is the performance
loss compared to the optimal specialized routes?

3. THEORETICAL ANALYSIS
The effectiveness of the combined optimal routing framework is

best characterized by how much performance we have to sacrifice
for the additional flexibility that the framework offers. In this sec-
tion, we first derive when we can find optimal combined routes, and
we then study permutation traffic in more detail.

3.1 Necessary and Sufficient Conditions
for Optimality

We present the necessary and sufficient condition obtained from
the equilibrium conditions of Eq. 3 in the next theorem albeit with
a simpler proof for ease of exposition. Identifying the particular
cases when can achieve optimal combined routes and identifying
the probabilities of their occurrence is an area that we are continu-
ing to explore.

Theorem 2. Suppose that Y 1, . . . ,Y M are the combined routes ob-
tained from Eq. 3 and Y ∗1 ,Y ∗2 , . . . ,Y ∗M are the optimal routes corre-
sponding to the traffic patterns D1,D2, . . . ,DM . Then f (γ i) = f (γ∗i )

(i = 1, . . . ,M) if and only if Y 〈s,d〉i /Di(s,d) =Y 〈s,d〉∗j /D j(s,d) (i, j =
1, . . . ,M) where Di(s,d) > 0 and D j(s,d) > 0 represents the de-
mand from s to d for traffic patterns Di and D j respectively.

Proof. Clearly if Y 〈s,d〉∗i /Di(s,d) = Y 〈s,d〉∗j /D j(s,d) (i, j =
1, . . . ,M) where Di(s,d) > 0 and D j(s,d) > 0 then the condition
required to be satisfied by the shared flows in Eq. 3 is satisfied and
consequently Y ∗i (i = 1, . . . ,M) is a solution to Eq. 3 indicating that
f (γ i) = f (γ∗i ) (i = 1, . . . ,M).

Next suppose that f (γ i) = f (γ∗i ) (i = 1, . . . ,M). Clearly Y i(i =
1, . . . ,M) are optimal for the traffic matrices D1,D2, . . . ,DM respec-
tively, i.e., Y i = Y ∗i (i = 1, . . . ,M). Also since Y i(i = 1, . . . ,M) is

a solution to Eq. 3 we know that the condition Y 〈s,d〉i /Di(s,d) =

Y 〈s,d〉j /D j(s,d) (i, j = 1, . . . ,M) where Di(s,d) > 0 and D j(s,d) >
0 is satisfied for the shared flows between the pairs of traffic
matrices Di and D j and so we conclude that Y 〈s,d〉∗i /Di(s,d) =

Y 〈s,d〉∗j /D j(s,d) (i, j = 1, . . . ,M).

In words, the above result states that we can find optimal com-
bined routes for a given uncertainty set, if and only if for any shared
flow there exists optimal routes obtained by solving Eq. 2 that are
the same for all the traffic matrices in the uncertainty set that con-
tain that flow.

But this condition as stated is difficult to verify in practice and
we would like to find verifiable conditions. For instance, from the
structure of Eq. 3, it is clear that if there are no shared flows between
the Dis then the problem decouples into M independent optimal
routing problems and the routes obtained by solving Eq. 3 will be
individually optimal for each element of D. This gives us an easy to
check sufficient condition for when solutions to Eq. 3 are optimal
combined routes.

3.2 Permutation Traffic Matrices
The analysis in the previous section applies to all traffic patterns,

but in this section we narrow our focus to just permutation traffic
matrices. In these traffic patterns, each row and each column has
only one non-zero entry. For a network with N nodes there are N!
possible permutation traffic matrices. First, for the sake of simplic-
ity, suppose that the uncertainty set D consists of two permutation
traffic matrices. The next theorem tells us how likely it is that these
two traffic matrices do not have any shared flows.

Proposition 1. The number of traffic patterns that do not share a
flow with a given permutation traffic pattern for a network that has
N nodes is given by PN = N!−∑

N−1
i=0

(N
i
)
Pi where P0 = 1. Fur-

thermore, we see that limN→∞ PN/N! = 1/e or that as N → ∞ the
probability of selecting a pair of permutation traffic matrices which
do not share flows tends to 1/e.



Proof. We first note that for the purpose of determining if there
are shared flows between two traffic matrices, the rates required
by the flows do not matter. So we index flows simply by a 1 if a
flow exists and a 0 otherwise. Any permutation matrix can be con-
verted to any other permutation matrix by left multiplying it with
a suitable permutation matrix. We note that a permutation traffic
pattern A will share a flow with another permutation traffic pattern
B only if the permutation matrix that transforms A’s permutation
matrix into the permutation matrix of B has non-zero diagonal en-
tries. By eliminating all permutation matrices with non-zero di-
agonal entries from the set of permutation matrices leaves us with
the transformations that will yield traffic patterns that do not share a
flow with a given permutation traffic pattern. Consequently we have
PN = N!−∑

N−1
i=0

(N
i
)
Pi. Here we set P0 = 1 for brevity in notation.

The second part of the theorem is similar to the famous "Hat
Check Problem" studied by Bernoulli and Montmort although we
provide a different solution. We have,

N

∑
i=0

(
N
i

)
Pi = N!

⇒
N

∑
i=0

(
N
i

)
kii! = N!

⇒
N

∑
i=0

ki/(N− i)! = 1

Using induction we can show that ki = ∑
i
j=0(−1) j/ j!. First we

note that for N = 0, k0 = 1. Then applying the induction hypothesis
to ∑

N
i=0 ki/(N− i)! yields

N

∑
i=0

i

∑
j=0

(−1) j

j!(N− i)!

=
N

∑
k=0

k

∑
j=0

(−1) j

j!(k− j)!

=
N

∑
k=0

0k/k!

= 1

Since ki = ∑
i
j=0(−1) j/ j!, we have limi→∞ ki = 1/e completing

the proof.

As one might expect this probability decreases as the number of
traffic matrices in D increases. Another interesting restriction is
obtained when we study what the maximum size of the set D can
be if we consider only permutation traffic patterns that do not share
flows.

Proposition 2. The cardinality of D is N if we restrict attention to
permutation traffic patterns that do not share flows.

Proof. If the traffic patterns do not share flows, by the pigeon hole
principle we can conclude that the cardinality of D can be at most
N. To see that it is indeed N, we observe that row rotating an N×N
identity matrix yields a set of N permutation matrices with corre-
sponding traffic patterns that do not share flows. Multiplying any
given permutation matrix by this set yields a set of permutation ma-
trices corresponding to traffic patterns that do not share flows.

% of
all

with
Γ = 1

% of
opt

with
shared

% of
non-opt

with
Γ < 1.05

max
Γ

% of non-opt
with given num

shared flows

M 1 2 3 4 5+

2 65 62 100 1.004 29 57 14 0 0
3 20 72 100 1.009 29 18 12 18 23
4 10 100 87 1.073 0 0 16 5 79
5 3 100 82 1.090 0 0 0 0 100
6 0 − 78 1.150 0 0 0 0 100

Table 1: Results of Numerical Analysis – Columns list the size of
the uncertainty sets (M); percentage of all uncertainty sets with loss
factor (l) of one (i.e., optimal combined routes are feasible); per-
centage of optimal combined routes for which there is at least one
shared flow; percentage of non-optimal combined routes with a loss
factor less than 1.05; maximum loss factor over all uncertainty sets;
percentage of non-optimal combined routes with the given number
of shared flows.

For uncertainty sets comprising well-structured permutation traf-
fic patterns, with the above results we are able to characterize to
some extent when we have optimal combined routes. However, as
pointed out earlier, even in this case it is challenging to determine
every situation in which we can find optimal combined routes and
if there is loss in optimality to quantify the loss. Consequently, we
rely on numerical experiments to help us further characterize the
performance of the combined optimal routing framework.

4. NUMERICAL ANALYSIS
In this section, we empirically answer, as the size of the uncer-

tainty set increases, how often we can find optimal combined routes
and if optimal combined routes do not exist, what is the loss factor.
The loss factor (Γ) is the factor by which the average number of
packets with combined optimal routes differ from that with optimal
specialized routes. In other words, Γ = ∑

M
i=1 pi f (γi)/∑

M
i=1 pi f (γ∗i ).

Once again, we restrict attention to permutation traffic patterns in
order to obtain a more complete characterization of the performance
of the combined optimal routing framework on this important class
of traffic patterns.

We performed our evaluations over uncertainty sets with two to
six traffic matrices on a 6×6 two-dimensional mesh. For each set
size, we randomly generated 500 uncertainty sets and solved the
corresponding specialized and combined optimal routing problems
with the objective being to minimize the average number of pack-
ets in the network. Note that these numerical experiments involve
solving multiple convex optimization problems with several hun-
dred thousand variables. Even though the optimization problems
were solved efficiently using cvx [6], the calculations for each un-
certainty set took on the order of hours to complete and the com-
plete numerical analysis required many thousands of hours of com-
putation. The results from the numerical analysis are summarized
in Table 1.

The first metric that we studied was the empirical probability
of being able to find optimal combined routes. In order to go be-
yond the analytical results of the previous section in quantifying the
performance of the combined optimal routing framework, we also
studied the probability of finding optimal combined routes when
the traffic matrices in the uncertainty set shared flows. But as the
size of the uncertainty set was increased, the empirical probability



0 0.1 0.2 0.3 0.4 0.5 0.6
0

10

20

30

40

 

 

Offered Bandwidth (flits/cycle)

L
at

en
cy

 (
1

0
0

0
 c

y
cl

es
)

ROMM

O1TURN

DOR

Specialized

Combined

0 0.1 0.2 0.3 0.4 0.5 0.6
Offered Bandwidth (flits/cycle)

(a) (b)

Figure 5: Latency vs. Offered Bandwidth for Optimal Com-
bined Routes – Theoretical and numerical analysis predicts the
combined routes should be able to acehive the same throughput as
the specialized routes.

of finding optimal combined routes decreased as we would expect.
Encouragingly, for most of the uncertainty sets that were generated,
combined optimal routes performed to within 5% of the optimal
specialized routes as can be seen.

This observation naturally led to the next question which was
when we did lose optimality, how bad was the loss? For uncer-
tainty set sizes 2 and 3, at least in our sample sets, very low loss in
optimality was observed. However, for larger uncertainty set sizes,
fairly high values of Γ were observed in the worst case. But even
in these cases, we expect that the combined optimal routes will per-
form better than the general-purpose routing algorithms as the next
section will illustrate. For the uncertainty sets with non-optimal
combined routes, we also studied the percentages of occurrence of
different numbers of shared flows. The idea was to study the cor-
relation between the number of shared flows and the probability of
an uncertainty set having an undesirably high value for Γ.

5. SIMULATION RESULTS
The simulator that we used was DARSIM [10], a cycle-level on-

chip network simulator. All the simulations were performed on a
6×6 two-dimensional mesh network. The simulator was given a
warm-up period of 20,000 cycles after which performance statis-
tics were collected over 100,000 cycles in order to ensure the accu-
racy of the results. The primary performance criteria that we mea-
sured were throughput and latency. The data rates are expressed in
flits/cycle and each packet is divided into 8 flits. Also the simula-
tor was configured so that each physical channel was divided into 6
virtual channels with 8 flits of buffering each. The capacity of the
physical channel was set to be 1 flit/cycle. In the simulator, virtual
channels are pre-allocated to the different flows once the routes are
computed so that deadlock is avoided according to the static virtual
channel allocation scheme described in [16].

The aim of the simulations was to get an idea of how factors
like buffering and flow control influenced the performance of the
optimal routes. We conducted our study with two uncertainty sets
of size two where one had optimal combined routes and the other
did not. In order to compare the performance of the optimal rout-
ing scheme with the general-purpose routing algorithms, we also
studied how ROMM, O1TURN, and DOR performed for the traffic
matrices in the uncertainty sets. As expected, from the latency-
throughput curves in Fig. 5, the optimal combined routes match
the peak throughput achieved by the optimal specialized routes for
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Figure 6: Latency vs. Offered Bandwidth for Sub-Optimal
Combined Routes – Theoretical analysis shows that optimal com-
bined routes are infeasible, but numerical analysis predicts that the
combined routes should still perform close to the specialized routes.

both traffic matrices in the uncertainty set while outperforming the
general-purpose routing algorithms.

More interesting results can be observed from the uncertainty set
with non-optimal combined routes. From the previous section we
expect that for uncertainty set size two, the combined routes should
perform very close to the optimal specialized routes. Even factoring
in the affects of non-idealities introduced by the simulator, we see
from Fig. 6 that the specialized and combined routes are very close
to each other in performance. Once again, it can be observed that
the application-aware schemes yield better performance than the
general-purpose algorithms.

Of course it would be interesting to continue exploring the space
of permutation matrices and study how the non-ideal characteristics
of on-chip networks affect the performance of combined optimal
routing on larger uncertainty sets where adversarial traffic matrices
can result in larger loss factors. The simulation and numerical re-
sults suggest this and many other directions of continued research
to give us a better understanding of the properties of the combined
optimal routing framework which appears to be a promising first
step towards introducing optimal routing with a certain degree of
flexibility to networks on-chip.

6. RELATED WORK
In the context of on-chip networks, application-aware optimal

single-path routing for a single traffic pattern was explored in [3,9].
But the focus on single path routes made the optimal routing prob-
lem NP-hard and consequently inefficient to solve. On the other
hand, optimal multi-path routing for a single traffic pattern was
explored even earlier [18]. Unlike the optimal single-path rout-
ing problem, the optimal multi-path routing problem is convex and
therefore can be solved efficiently to determine optimal routes. Our
work computes optimal multi-path routes as well, but differs from
the previous work in that we are computing the routes for an uncer-
tainty set of traffic patterns.

Another approach to application-aware routing can be found
in [12] where the idea is to map the application’s communication
graph to the network in such a way as to avoid cycles in the channel
dependency graph. Then minimal adaptive deadlock-free routing
is performed on the acyclic application-aware channel dependency
graph. However, here knowledge of the application is just used to
avoid deadlock by a suitable mapping of the traffic requirements to



the network. It is not used to try and optimize the performance of
the routing algorithm with respect to any metric.

The problem of dealing with traffic uncertainty when formulat-
ing the optimal routing problem has only begun to receive attention
over the last few years. Algorithms like COPE [20] approach the
problem by trying to minimize the worst case performance of the
routing scheme within an uncertainty set. The problem of finding
optimal routes by minimizing the expected cost over a set of traffic
patterns has been studied previously in the context of intra-domain
routing in the Internet [21]. However, the focus was on setting up
the problem and extending the results of [5] to develop a distributed
solution method. Our work goes further by providing conditions for
the existence of optimal combined routes, empirically studying the
probability that these conditions are met, and quantifying the loss
in optimality when optimal combined routes do not exist.

7. CONCLUSIONS
The paper presents a first step towards more flexible application-

aware routing in on-chip networks. In order to get around the fact
that specialized optimal routing is not viable for traffic patterns
other than the one that it was designed for, we introduce combined
optimal routing that can handle uncertainties in the traffic patterns
that might be produced in the on-chip network. The performance
of the schemes and their advantages are characterized analytically,
numerically, and through simulations. Importantly, we derive nec-
essary and sufficient conditions for the combined routes to have
no loss in optimality. Numerical experiments with randomly gen-
erated uncertainty sets of permutation traffic matrices provide em-
pirical evidence that combined optimal routing can perform very
close to specialized optimal routing. The simulation results ob-
tained using sample points from these randomly generated uncer-
tainty sets show that this observation from numerical experiments
holds even with realistic pipeline latencies, arbitration, and buffered
flow-control. Overall, the initial results indicate that the combined
optimal routing framework is a promising technique that adds flex-
ibility to application-aware optimal routing.

There are a number of future directions that we plan to pursue in
order to further our understanding of the structure of the combined
routing problem and address practical implementation issues. For
instance, we would like to better quantify how likely optimal com-
bined routes exist for more complex traffic patterns. We are also
currently exploring how to bound the loss in optimality in the com-
bined routing problem. The simulation results imply that the loss
is typically small, but analytical results will provide a better under-
standing given that simulations alone cannot the sweep the entire
parameter space.

There also exist practical implementation issues that need fur-
ther investigation. For example, multi-path routes can potentially
cause out-or-order delivery of flits and require buffers to re-order
them. It is also necessary to have a good deadlock scheme in order
to fully exploit the performance advantages of optimal routing. In
the paper, we used static allocation of virtual channels in order to
avoid deadlock [16]. We plan to further study different deadlock
avoidance schemes such as resource ordering [8] or escape chan-
nels [4], and their performance implications. Also, we believe that
it is important to couple the optimal routing schemes with a suit-
able flow control scheme in order to fully exploit their performance
advantages. Consequently, identifying a good flow control scheme
is of particular interest to us. Finally, in order to be able to use the
routes generated by the techniques described in the paper, we need
a router that is capable of splitting flows. Designing and evaluating

the router and ways to encode the routes efficiently are two other
directions for future research.
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