
Appears in the Proceedings of the Workshop on Reproducible Research Methodologies (REPRODUCE), February 2014

Hardware Generation Languages as a Foundation for
Credible, Reproducible, and Productive Research Methodologies

Derek Lockhart and Christopher Batten
School of Electrical and Computer Engineering, Cornell University, Ithaca, NY

{dml257,cbatten}@cornell.edu

Cycle-approximate simulators (CAS) have long been a staple in
the experimental toolkit of computer architecture researchers. How-
ever, recent technology trends have triggered a growing emphasis on
specialization and heterogeneity, bringing into question the viabil-
ity of a purely CAS-based methodology. In this position paper, we
argue computer architects should consider adopting an increased fo-
cus on synthesizable hardware description languages (HDL) to im-
prove credibility and reproducibility. Additionally, we discuss the
need for hardware generation languages and integrated frameworks
to improve researcher productivity and close the gap between current
CAS and HDL methodologies.

1. A Tale of Two Research Methodologies
Modern computer architecture research has increasingly relied on

the use of cycle-approximate simulators (CAS) as the primary tool for
evaluating novel architectural mechanisms. We characterize a CAS
methodology as the use of a computer architecture simulation frame-
work implemented in C or C++ (e.g., GEM5 [3], SimpleScalar [1]),
configured and/or modified to model a particular system architecture
and any enhancements. Models built using a CAS methodology are
capable of generating fairly accurate estimates of system performance
(in terms of cycles executed) provided that the simulated models
properly implement a sufficient level of architectural detail [4]. Addi-
tional tools like McPAT [8] can augment these frameworks to gener-
ate preliminary estimates for other key metrics such as area, energy,
and timing. The architecture community has generally considered
the benefits (e.g., flexibility, simulation speed) of CAS frameworks
to outweigh the drawbacks (e.g., accuracy, reproducibility), making
them a popular choice among academic research groups.

An alternative methodology for computer architecture research re-
lies on the construction of synthesizable register-transfer-level imple-
mentations using a hardware description language (HDL) such as
SystemVerilog, Verilog, or VHDL. Paired with a commercial ASIC
EDA toolflow, a synthesizable implementation can generate highly
accurate estimates of area, energy, cycle time, and cycles executed.
Unlike the approximate models of hardware behavior created using a
CAS methodology, an HDL methodology constructs a true hardware
implementation which provides a number of advantages beyond just
improved accuracy. An HDL methodology increases credibility with
industry, enforces a model/simulator separation which enhances re-
producibility, provides interoperability with a range of industry-grade
tools, and enables a path to FPGA or ASIC prototypes. Although
widely used by industry and VLSI research groups, the HDL method-
ology is less popular in computer architecture research due to long
HDL development times and slow HDL simulation speeds.

Attempts to leverage both CAS and HDL methodologies can be a
challenging prospect due to the considerable gap between the tools
and techniques used in each domain. For academic research groups
lacking the resources and manpower of an industrial research lab,
bridging this gap can be exceedingly difficult.

2. Limitations of Existing Methodologies
in an Era of Specialization

When exploring specialization and its impact on system perfor-
mance, it becomes increasingly difficult to perform credible experi-

ments using a purely CAS methodology. A CAS methodology relies
on existing implementations of processors, memories, and networks
to act as targets from which models implemented in a CAS method-
ology are validated. Because specialization creates unique hard-
ware blocks tailored to accelerating workload-specific operations, re-
searchers exploring specialization generally have no hardware targets
from which to validate their CAS models. Several studies have shown
that without validation, performance and power estimates from CAS
models become difficult to trust [5, 6].

An HDL methodology can be leveraged by architects to cre-
ate register-transfer-level (RTL) implementations of novel special-
ized blocks, helping address some of the problems encountered
when experimenting with architectures incorporating large amounts
of specialization. Unfortunately, the limited productivity of an HDL
methodology makes it difficult to quickly create hardware instances
of many different specialized units. In addition, a purely HDL
methodology prevents researchers from mixing blocks at various lev-
els of abstraction so that detailed models of specialized units can be
composed with cycle-approximate, analytical, or functional imple-
mentations of other components in the system.

Going forward, we believe two major improvements are needed
to close the gap between CAS and HDL to enable compelling new
research in hardware specialization. The first is better tools for pro-
ductive RTL implementation, existing HDLs are simply not capable
of the extensive parameterization necessary for rapid design space
exploration of novel hardware specializations. The second is greater
integration between the CAS and HDL methodologies.

3. Hardware Generation Languages (HGLs)
Previous work has proposed replacing the current design practice

of constructing specific chip instances with an approach focused on
construction of chip generators, a technique that would allow for
templated RTL implementations, rapid design-space exploration, and
codification of designer knowledge [10]. Development of modern,
highly-parameterizable hardware development languages, which we
term hardware generation languages (HGLs), are a key component
to enabling chip generator construction and productive RTL design in
general. A number of projects already exist which could be consid-
ered HGLs, including Genesis2 [11], Chisel [2], and Bluespec [9].
We argue that future computer architecture methodologies should
have a strong foundation built on HGLs in order to enable credible,
reproducible, and productive research.

HGL Credibility – Credibility comes from commercially-vetted
processes built around industry-standard HDLs such as SystemVer-
ilog, Verilog, and VHDL. Nearly all modern ASIC flows are built
around one or more of these languages and an extensive set of com-
mercial tools exist to simulate, verify, and synthesize hardware spec-
ified in these HDLs. Since HGLs generally provide a translation path
to an industry-standard HDL they enable access to the high-fidelity
analysis generated by commercial EDA tools. This is in contrast to
a CAS methodology where there are no industry standards and few
attempts at detailed performance, area, energy, and timing validation
against real hardware implementations.

HGL Reproducibility – HGLs usually provide standardized, con-
cise hardware specifications with well-defined semantics. The HGL

1



translation path to industry-standard HDLs ensures compatibility
with a wide range of of toolflows; researchers can independently
verify reported results by feeding HDL source into their own tools.
In contrast, a CAS methodology presents numerous challenges to
reproducibility due to the large number of independent simulation
frameworks, each with their own software architecture and modeling
strategy. The vast majority of computer architecture simulators are
written in a sequential functional fashion, as opposed to the concur-
rent structural composition of hardware, making it difficult to reason
about the hardware behavior they are modeling [13]. Even when pro-
vided with the source code of a CAS model reproducing prior work
in a different simulation infrastructure can be quite challenging.

HGL Productivity – In addition to enabling the creation of hard-
ware templates for design space exloration, HGLs can improve de-
signer productivity by introducing higher-level language abstractions.
Techniques such as polymorphism, parameterizable types, bitwidth
inference, bundles, and programmable structural composition help
facilitate succinct and expressive RTL implementations. HGLs can
also help address the low performance of RTL simulation by enabling
alternative simulation techniques. For example, Chisel has the abil-
ity to generate fast C++ simulators which demonstrate 10x speedups
over commercial tools for long running simulations. [2]

4. Integrated CAS/HGL Methodologies
While HGLs can greatly improve the productivity of HDL method-

ologies via construction of chip generators, the detailed nature of an
RTL design is unlikely to ever surpass the productivity (or simulation
speed) of high-level CAS modeling. We argue that future computer
architecture methodologies should provide tight integration of both
HGL and CAS methodologies to create a unified framework that is
credible, reproducible, and productive. We identify three incremental
steps to such tight integration of HGL and CAS methodologies.

Integrating HGLs into Widely Adopted CAS Frameworks –
Perhaps the most straight-forward approach is to translate HGL de-
sign instances into industry standard HDLs and then to compile these
HDL design instances into a widely adopted CAS framework. For
example, one could imagine using Chisel to implement a specialized
block, generating the corresponding Verilog RTL, using a tool such
as Verilator [14] to translate the Verilog RTL into a cycle-accurate
C++ model, and then linking this model into the GEM5 simulation
framework. While this is a promising first-step, most widely adopted
CAS frameworks were not designed with HGL integration in mind.
This can potentially limit the granularity of integration. For example,
while it might be possibly to integrate blocks designed with an HGL
methodology into the memory system of GEM5, it would be more
challenging to create new specialized functional units or accelerators
that are tightly coupled to the main processor pipeline.

Integrating HGLs into New CAS Frameworks – A more radical
approach, would be to develop a new CAS framework from scratch
specifically designed to facilitate tight integration with HGLs. Such a
CAS framework will likely need to avoid performance optimizations
such as split functional/timing models and use some form of concur-
rent structural modeling [13]. A strong example of such an approach
is Cascade, a C++ framework used in the development of the Anton 2
supercomputer and specifically designed to enable rapid design-space
exploration using a CAS methodology, yet also enable tight Verilog
integration [7]. Cascade includes support for interfacing binding, en-
abling composition of Verilog and C++ modules without the need for
specialized data-marshalling functions.

Creating a Unified CAS/HGL Framework – Perhaps the most
extreme approach would be a completely unified framework that en-
ables both CAS and HGL methodologies in a single high-level lan-

guage. SystemC was originally envisioned to be such a framework,
although it is mostly used in practice for cycle-approximate and even
more abstract transaction-level modeling to create virtual system plat-
forms for early software development [12]. In our own research
group, we are developing a unified, Python-based framework to fa-
cilitate a tightly integrated CAS/HGL methodology. Leveraging a
concurrent-structural modeling approach, it naturally supports incre-
mental refinement from high-level algorithms to cycle-approximate
model to cycle-accurate implementation. An embedded DSL allows
Python to be used as a hardware generation language for construc-
tion of highly-parameterized hardware designs. These parameterized
designs can then be translated into synthesizable Verilog instances
for use with commercial toolflows. Due to the unified nature of
the framework, high-level cycle-approximate models can naturally be
simulated alongside detailed RTL implementations, allowing users to
finely control speed and accuracy tradeoffs on a module by module
basis. Existing Verilog IP can be incorporated for cosimulation using
a Verilator-based translation toolchain, enabling those with signifi-
cant Verilog experience to leverage Python as a productive verifica-
tion language.

Acknowledgements
This work was supported in part by NSF Awards CCF-1149464

and CNS-1059233, DARPA YFA N66001-12-1-4239, and donations
from Intel Corporation, NVIDIA Corporation, and Synopsys, Inc.

References
[1] T. Austin et al. SimpleScalar: An Infrastructure for Computer System

Modeling. IEEE Computer, 35(2):59–67, Feb 2002.
[2] J. Bachrach et al. Chisel: Constructing Hardware in a Scala Embedded

Language. Design Automation Conf. (DAC), Jun 2012.
[3] N. Binkert et al. The GEM5 Simulator. SIGARCH Computer

Architecture News, 39(2):1–7, Aug 2011.
[4] A. Butko et al. Accuracy Evaluation of GEM5 Simulator System.

Workshop on Reconfigurable Communication-Centric
Systems-on-Chip (ReCoSoC), Jul 2012.

[5] J. Gibson et al. FLASH vs. (Simulated) FLASH: Closing the
Simulation Loop. Int’l Conf. on Arch Support for Prog Languages and
Operating Systems (ASPLOS), Dec 2000.

[6] M. Govindan et al. End-to-End Validation of Architectural Power
Models. Int’l Symp. on Low-Power Electronics and Design (ISLPED),
Aug 2009.

[7] J. P. Grossman et al. The Role of Cascade, a Cycle-Based Simulation
Infrastructure, in Designing the Anton Special-Purpose
Supercomputers. Design Automation Conf. (DAC), Jun 2013.

[8] S. Li et al. The McPAT Framework for Multicore and Manycore
Architectures: Simultaneously Modeling Power, Area, and Timing.
ACM Trans. on Arch and Code Opt (TACO), 10(1), Apr 2013.

[9] N. Nikhil. Bluespec System Verilog: Efficient, Correct RTL from
High-Level Specifications. Int’l Conf. on Formal Methods and Models
for Co-Design (MEMOCODE), Jun 2004.

[10] O. Shacham et al. Rethinking Digital Design: Why Design Must
Change. IEEE Micro, Nov/Dec 2010.

[11] O. Shacham et al. Avoiding Game Over: Bringing Design to the Next
Level. Design Automation Conf. (DAC), Jun 2012.

[12] SystemC TLM (Transaction-level Modeling). Online Webpage, 2013
(accessed July, 2013). http:
//www.accellera.org/downloads/standards/systemc/tlm.

[13] M. Vachharajani et al. The Liberty Simulation Environment: A
Deliberate Approach to High-Level System Modeling. ACM Trans. on
Computer Systems (TOCS), 24(3):211–249, Aug 2006.

[14] Verilator. Online Webpage, 2013 (accessed Aug 7, 2013).
http://www.veripool.org/wiki/verilator.

2


