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1 Abstract
We present an overview of previously published features and work in progress for PyMTL, an open-source Python-based hardware generation,
simulation, and verification framework that brings compelling productivity benefits to hardware design and verification. PyMTL provides a natural
environment for multi-level modeling using method-based interfaces, features highly parametrized static elaboration and analysis/transform passes,
supports fast simulation and property-based random testing in pure Python environment, and includes seamless SystemVerilog integration.

2 Hardware Development Workflows
Existing HDL, HPF, HGF, and HGSF Workflows

We categorize state-of-the-art hardware development workflows into four main groups with increasing productivity: traditional HDLs, hardware
preprocessing frameworks (HPF), hardware generation frameworks (HGF), and hardware generation and simulation frameworks (HGSF) .

* DUT = design under test; DUT’ = generated DUT; TB = test bench; TB* = TB with limited functionality; TB’ = generated TB; Sim = simulation.
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Other examples: VHDL Other examples: Verischemelog Other examples: Lava, HML, Stratus, PHDL

3 Fast edit-debug-sim loop
3 Single language for design and

testbench
7 Not-so-good parametrization
7 Difficult to build powerful testbench

3 Better parametrization with insignificant
coding style change

7 Multi-language semantic gap
7 Still difficult to build powerful testbench

3 Powerful parametrization
3 Single language for design

7 Slower edit-debug-sim loop
7 Yet still difficult to build powerful testbench

(can only generate simple testbench)
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(d) HGSF (e.g., PyMTL)

3 Fast(?) edit-debug-sim loop in host language

3 Single language for design and testbench

3 Powerful parametrization

3 Powerful testbench (unleash Python’s full power!)

Other examples: JHDL, C�aSH, PyMTL, PyRTL, Migen, PyHDL

PyMTL’s HGSVF Workflow and Software Architecture

Verilog
  DUT'

Sim

   HDL
(Verilog)

FL DUT

Host Language
      (Python)

Test Bench

Sim
 cosim

FPGA/
 ASIC

generate synth
 

 

CL DUT
RTL DUT

coverage.pypytest hypothesis

Model

PyMTL
Specifications

(Python)

Config

Elaboration Model
Instance

PyMTL "Kernel"
(Python)

Simulatable
Model

Test & Sim
Harnesses

PyMTL
Passes
(Python)

Simulation
Pass

Translation
Pass Verilog

Analysis
Pass

Analysis
Output

Transform
Pass

New
Model

3 PyMTL’s Eight Features

.Multi-level modeling
# FL implementation for calculating log2(N)
@s.tick_fl
def fl_algorithm():

# put/get have blocking semantics
s.out.put( math.log( s.in.get(), 2 ) )

# CL implementation emulates a 3-cycle pipeline
s.pipe = Pipeline( latency = 3 )
@s.tick_cl
def cl_algo_pipelined():

if s.out_q.enq_ready():
if s.pipe.can_pop(): s.out_q.push( s.pipe.do_pop() )
else: s.pipe.advance()

if not s.in_q.deq_ready():
s.pipe.do_push( math.log( s.in_q.deq(), 2 ) )

# Part of RTL implementation
s.N = Reg( Bits32 )
s.res = RegEn( Bits32 )
s.connect( s.res.out, s.out.msg )
...
@s.combinational
def rtl_combN():

s.res.in_ = s.res.out + 1
s.N.in_ = s.N.out >> 1
if s.N.out == 0: s.res.en = Bits1( 0 )
else: s.res.en = Bits1( 1 )

. Pure-Python simulation

. Property-based random testing

.Highly Parametrized Static Elaboration

.Method-based interfaces
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. Python/SystemVerilog integration
# By default PyMTL imports module DUT of DUT.v
# in the same folder as the python source file.
class DUT( VerilogModel ):

def __init__( s ):
s.in_ = InPort ( Bits32 )
s.out = OutPort ( Bits32 )

# Connect top level ports of DUT
# to corresponding PyMTL ports
s.set_ports({
'clk' : s.clk,
'reset' : s.reset,
'in' : s.in_,
'out' : s.out,

})

.Analysis and Transform passes
# Analysis pass example:
# Get a list of processors with >=2 input ports
def count_pass( top ):

ret = []
for m in top.get_all_modules_filter(

lambda m: len( m.get_input_ports() ) >= 2 ):
if isinstance( m, AbstractProcessor ):

ret.append( m )
return m

# Transform pass example:
# Wrap every ctrl with CtrlWrapper
def debug_port_pass( top ):

for m in top.get_all_modules():
if m.get_full_name().startswith("ctrl"):

p = m.get_parent()
ctrl = p.delete_component( "ctrl" )
w = p.add_component( "ctrl_wrap", CtrlWrapper() )
new_ctrl = w.add_component( "ctrl", m )
...
< connect ports >
...

. Fast Pure-Python Simulation
PyMTL MyHDL PyRTL Migen IVerilog CVS Mamba

Divider 118K CPS 0.8⇥ 2.2⇥ 0.03⇥ 0.6⇥ 9.3⇥ 20⇥
1-core 20K CPS - - - 1⇥ 15⇥ 16⇥
32-core 360 CPS - - - 1.8⇥ 25⇥ 12⇥

4 PyMTL Use Cases

Course Lab Assignments

PyMTL has been used by over 400 students across two universities, including
in a senior-level undergraduate computer architecture course at Cornell Univer-
sity(ECE 4750), in a similar course at Boston University (EC 513), and in a
graduate-level ASIC design course at Cornell University (ECE 5745). The com-
puter architecture courses involved multiple design labs (integer multiplier, simple
RISC-V processor, set-associative blocking cache, and bus/ring network), cul-
minating in a final lab composing all previous components to build a multi-core
system. Students chose whether to design in PyMTL, in SystemVerilog, or with a
mix, but they were required to test their designs using PyMTL.

Computer Architecture Research

Cosimulate PyMTL cycle-level accelerator model with gem5 CPU/memory:
Shreesha Srinath, Berkin Ilbeyi, Mingxing Tan, Gai Liu, Zhiru Zhang, and Christopher Batten. ”Architectural Specialization for Inter-Iteration
Loop Dependence Patterns.” 47th ACM/IEEE Int’l Symp. on Microarchitecture (MICRO-47), Dec. 2014
Ji Kim, Shunning Jiang, Christopher Torng, Moyang Wang, Shreesha Srinath, Berkin Ilbeyi, Khalid Al-Hawaj, and Christopher Batten. ”Using
Intra-Core Loop-Task Accelerators to Improve the Productivity and Performance of Task-Based Parallel Programs.” 50th ACM/IEEE
Int’l Symp. on Microarchitecture (MICRO-50), Oct. 2017.

Create architecture templates of tuned accelerator with PyMTL RTL modeling:
Tao Chen, Shreesha Srinath, Christopher Batten, and Edward Suh. ”An Architectural Framework for Accelerating Dynamic Parallel
Algorithms on Reconfigurable Hardware.” 51st ACM/IEEE Int’l Symp. on Microarchitecture (MICRO-51), Oct. 2018.
Tao Chen and Edward Suh. ”Efficient Data Supply for Hardware Accelerators with Prefetching and Access/Execute Decoupling.” 49th
ACM/IEEE Int’l Symp. on Microarchitecture (MICRO-49), Oct. 2016.

Batten Research Group Test Chip 1 (2016)

. Fabricated in IBM 130nm; 2 x 2mm die; 1.2M transistor; RISC processor; LVDS clock receiver.

Batten Research Group Test Chip 2 (2018)

. Fabricated in TSMC 28nm; 1mm x 1.25mm die; 6.7M transistor; quad-core in-order RV32IMAF;
smart sharing techniques for LLFUs and caches; synthesizable PLL.
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