
An Open-Source Python-Based Hardware
Generation, Simulation, and Verification Framework

Shunning Jiang, Christopher Torng,
Christopher Batten

Computer Systems Laboratory
School of Electrical and Computer Engineering

Cornell University

1 Abstract
We present an overview of previously published features and work in progress for PyMTL, an open-source Python-based hardware generation,
simulation, and verification framework that brings compelling productivity benefits to hardware design and verification. PyMTL provides a natural
environment for multi-level modeling using method-based interfaces, features highly parametrized static elaboration and analysis/transform passes,
supports fast simulation and property-based random testing in pure Python environment, and includes seamless SystemVerilog integration.

2 Hardware Development Workflows
Existing HDL, HPF, HGF, and HGSF Workflows

We categorize state-of-the-art hardware development workflows into four main groups with increasing productivity: traditional HDLs, hardware
preprocessing frameworks (HPF), hardware generation frameworks (HGF), and hardware generation and simulation frameworks (HGSF) .

* DUT = design under test; DUT’ = generated DUT; TB = test bench; TB* = TB with limited functionality; TB’ = generated TB; Sim = simulation.

DUT

Sim

TB

 HDL
(Verilog)

FPGA/
 ASIC

synth
DUT'

Sim

TB'

 HDL
(Verilog)

DUT

 Mixed
(Verilog+Perl)

TB

gen

gen
FPGA/
 ASIC

synth
DUT'

Sim

TB'

 HDL
(Verilog)

DUT

Host Language
 (Scala)

TB TB

FPGA/
 ASIC

gen

gen

synth

* *

(a) Traditional (b) HPF (e.g., Genesis2) (c) HGF (e.g., Chisel)

Other examples: VHDL Other examples: Verischemelog Other examples: Lava, HML, Stratus, PHDL

3 Fast edit-debug-sim loop
3 Single language for design and

testbench
7 Not-so-good parametrization
7 Difficult to build powerful testbench

3 Better parametrization with insignificant
coding style change

7 Multi-language semantic gap
7 Still difficult to build powerful testbench

3 Powerful parametrization
3 Single language for design

7 Slower edit-debug-sim loop
7 Yet still difficult to build powerful testbench

(can only generate simple testbench)

DUT'

Sim

 HDL
(Verilog)

DUT

Host Language
 (Python)

TB

Sim

 cosim

FPGA/
 ASIC

gen synth

(d) HGSF (e.g., PyMTL)

3 Fast(?) edit-debug-sim loop in host language

3 Single language for design and testbench

3 Powerful parametrization

3 Powerful testbench (unleash Python’s full power!)

Other examples: JHDL, C�aSH, PyMTL, PyRTL, Migen, PyHDL

PyMTL’s HGSVF Workflow and Software Architecture

Verilog
 DUT'

Sim

 HDL
(Verilog)

FL DUT

Host Language
 (Python)

Test Bench

Sim
 cosim

FPGA/
 ASIC

generate synth

CL DUT
RTL DUT

coverage.pypytest hypothesis

Model

PyMTL
Specifications

(Python)

Config

Elaboration Model
Instance

PyMTL "Kernel"
(Python)

Simulatable
Model

Test & Sim
Harnesses

PyMTL
Passes
(Python)

Simulation
Pass

Translation
Pass Verilog

Analysis
Pass

Analysis
Output

Transform
Pass

New
Model

3 PyMTL’s Eight Features

.Multi-level modeling
FL implementation for calculating log2(N)
@s.tick_fl
def fl_algorithm():

put/get have blocking semantics
s.out.put(math.log(s.in.get(), 2))

CL implementation emulates a 3-cycle pipeline
s.pipe = Pipeline(latency = 3)
@s.tick_cl
def cl_algo_pipelined():

if s.out_q.enq_ready():
if s.pipe.can_pop(): s.out_q.push(s.pipe.do_pop())
else: s.pipe.advance()

if not s.in_q.deq_ready():
s.pipe.do_push(math.log(s.in_q.deq(), 2))

Part of RTL implementation
s.N = Reg(Bits32)
s.res = RegEn(Bits32)
s.connect(s.res.out, s.out.msg)
...
@s.combinational
def rtl_combN():

s.res.in_ = s.res.out + 1
s.N.in_ = s.N.out >> 1
if s.N.out == 0: s.res.en = Bits1(0)
else: s.res.en = Bits1(1)

. Pure-Python simulation

. Property-based random testing

.Highly Parametrized Static Elaboration

.Method-based interfaces

Xcel FL

A
da

pt
er

RT
L

In
te

rf
ac

e

x = read(0x10)

Xcel CL

A
da

pt
er

RT
L

In
te

rf
ac

e

enqueue(req)

dequeue(resp)

Xcel RTL

RT
L

In
te

rf
ac

e

valid = 1; addr = ...

if valid: x = data

read(0x10)

Mem FLXcel FL

A
da

pt
er

FL
 In

te
rf

ac
e

x = read(0x10)

Xcel CL

C
L

In
te

rf
ac

e

enqueue(req)

dequeue(resp)

Xcel RTL

RT
L

In
te

rf
ac

e

if ready: en = 1; ...

rdy = 1; if en: ...

Port-Based Method-Based

FL
 In

te
rf

ac
e

valid/
ready

valid/
ready

valid/
ready

read()

 en/
ready

read()

A
da

pt
er

enq()
read()

deq() read(0x10)

Mem FL

FL
 In

te
rf

ac
e

read(0x10)

Mem FL

FL
 In

te
rf

ac
e

Mem FL

A
da

pt
er

RT
L

In
te

rf
ac

e

read(0x10)

Mem FL

A
da

pt
er

RT
L

In
te

rf
ac

e

read(0x10)

Mem FL

A
da

pt
er

RT
L

In
te

rf
ac

e

read(0x10)

. Python/SystemVerilog integration
By default PyMTL imports module DUT of DUT.v
in the same folder as the python source file.
class DUT(VerilogModel):

def __init__(s):
s.in_ = InPort (Bits32)
s.out = OutPort (Bits32)

Connect top level ports of DUT
to corresponding PyMTL ports
s.set_ports({
'clk' : s.clk,
'reset' : s.reset,
'in' : s.in_,
'out' : s.out,

})

.Analysis and Transform passes
Analysis pass example:
Get a list of processors with >=2 input ports
def count_pass(top):

ret = []
for m in top.get_all_modules_filter(

lambda m: len(m.get_input_ports()) >= 2):
if isinstance(m, AbstractProcessor):

ret.append(m)
return m

Transform pass example:
Wrap every ctrl with CtrlWrapper
def debug_port_pass(top):

for m in top.get_all_modules():
if m.get_full_name().startswith("ctrl"):

p = m.get_parent()
ctrl = p.delete_component("ctrl")
w = p.add_component("ctrl_wrap", CtrlWrapper())
new_ctrl = w.add_component("ctrl", m)
...
< connect ports >
...

. Fast Pure-Python Simulation
PyMTL MyHDL PyRTL Migen IVerilog CVS Mamba

Divider 118K CPS 0.8⇥ 2.2⇥ 0.03⇥ 0.6⇥ 9.3⇥ 20⇥
1-core 20K CPS - - - 1⇥ 15⇥ 16⇥
32-core 360 CPS - - - 1.8⇥ 25⇥ 12⇥

4 PyMTL Use Cases

Course Lab Assignments

PyMTL has been used by over 400 students across two universities, including
in a senior-level undergraduate computer architecture course at Cornell Univer-
sity(ECE 4750), in a similar course at Boston University (EC 513), and in a
graduate-level ASIC design course at Cornell University (ECE 5745). The com-
puter architecture courses involved multiple design labs (integer multiplier, simple
RISC-V processor, set-associative blocking cache, and bus/ring network), cul-
minating in a final lab composing all previous components to build a multi-core
system. Students chose whether to design in PyMTL, in SystemVerilog, or with a
mix, but they were required to test their designs using PyMTL.

Computer Architecture Research

Cosimulate PyMTL cycle-level accelerator model with gem5 CPU/memory:
Shreesha Srinath, Berkin Ilbeyi, Mingxing Tan, Gai Liu, Zhiru Zhang, and Christopher Batten. ”Architectural Specialization for Inter-Iteration
Loop Dependence Patterns.” 47th ACM/IEEE Int’l Symp. on Microarchitecture (MICRO-47), Dec. 2014
Ji Kim, Shunning Jiang, Christopher Torng, Moyang Wang, Shreesha Srinath, Berkin Ilbeyi, Khalid Al-Hawaj, and Christopher Batten. ”Using
Intra-Core Loop-Task Accelerators to Improve the Productivity and Performance of Task-Based Parallel Programs.” 50th ACM/IEEE
Int’l Symp. on Microarchitecture (MICRO-50), Oct. 2017.

Create architecture templates of tuned accelerator with PyMTL RTL modeling:
Tao Chen, Shreesha Srinath, Christopher Batten, and Edward Suh. ”An Architectural Framework for Accelerating Dynamic Parallel
Algorithms on Reconfigurable Hardware.” 51st ACM/IEEE Int’l Symp. on Microarchitecture (MICRO-51), Oct. 2018.
Tao Chen and Edward Suh. ”Efficient Data Supply for Hardware Accelerators with Prefetching and Access/Execute Decoupling.” 49th
ACM/IEEE Int’l Symp. on Microarchitecture (MICRO-49), Oct. 2016.

Batten Research Group Test Chip 1 (2016)

. Fabricated in IBM 130nm; 2 x 2mm die; 1.2M transistor; RISC processor; LVDS clock receiver.

Batten Research Group Test Chip 2 (2018)

. Fabricated in TSMC 28nm; 1mm x 1.25mm die; 6.7M transistor; quad-core in-order RV32IMAF;
smart sharing techniques for LLFUs and caches; synthesizable PLL.

This work was supported in part by NSF CRI Award #1512937, NSF SHF Award #1527065, DARPA POSH Award #FA8650-18-2-7852, and a donation from Intel. The authors acknowledge and thank Derek
Lockhart for his valuable feedback and his work on the original PyMTL framework. The authors would like to thank Ajay Joshi for using PyMTL for the computer architecture course at Boston University. The
author also thank all the students who have provided feedback to PyMTL. U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation
theron. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of any funding agency.

Publication: Appears in The First Workshop on Open-Source EDA Technology (WOSET 2018), Nov. 2018. URL: http://github.com/cornell-brg Contact Author: Shunning Jiang, 471 Rhodes Hall, Ithaca, NY 14853, sj634@cornell.edu

