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ABSTRACT
Modern high-level languages bring compelling productivity ben-
efits to hardware design and verification. For example, hardware
generation and simulation frameworks (HGSFs) use a single “host”
language for parameterization, static elaboration, test bench gener-
ation, behavioral modeling, and simulation. Unfortunately, HGSFs
often suffer from slow simulator performance which undermines
their potential productivity benefits. In this paper, we introduce
Mamba, a new Python-based HGSF that co-optimizes both the
framework and a general-purpose just-in-time compiler. We con-
duct a quantitative comparison of Mamba vs. traditional and emerg-
ing hardware development frameworks across both simple and
complex designs. Our results suggest Mamba is able to match the
performance of commercial Verilog simulators and is 10× faster
than existing HGSFs while still maintaining the productivity of
using a high-level language in hardware design.

1 INTRODUCTION
The increasing complexity of modern hardware has motivated de-
sign teams to augment or even replace traditional domain-specific
hardware description languages (HDLs) with high-level general-
purpose programming languages. The hope is that high-level lan-
guages can reduce time-to-solution by improving the productivity
of design and verification. These approaches include: high-level syn-
thesis (HLS), where a software-oriented program written in a high-
level language is automatically synthesized into a low-level HDL
implementation [10]; and hardware generation, where a hardware-
oriented declarative or procedural description written in a high-
level language is used to explicitly generate a low-level HDL im-
plementation. Both approaches use powerful general-purpose lan-
guage features to improve productivity including: strong static
type systems and/or flexible dynamic type systems; object-oriented,
generic, and functional programming paradigms; reflection and in-
trospection; lightweight syntax; and rich standard libraries. While
both approaches show promise, our focus in this work is on im-
proving methodologies for hardware generation.

Early work in hardware generation focused on developing hard-
ware preprocessing frameworks (HPFs) which use an ad-hoc inter-
mingling of a high-level language and a low-level HDL (e.g., Scheme
mixed with Verilog in Verischemelog [15], Perl mixed with Verilog
in Genesis2 [23]). Unfortunately, mixed-language HPFs create a
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semantic gap, since they require simultaneously designing, veri-
fying, and analyzing designs written in a high-level language (for
parameterization, static elaboration, test bench generation) and a
low-level HDL (for behavioral modeling). In an HPF, the high-level
language usually uses basic string processing and is unaware of
hardware semantics. True hardware generation frameworks (HGFs)
address this semantic gap by completely embedding parameteri-
zation, static elaboration, test bench generation, and behavioral
modeling in a unified high-level “host” language (e.g., Haskell in
Lava [7], standard ML in HML [16], Scala in Chisel [4], Python
in Stratus [5], PHDL [18]). However, HGFs must still generate a
low-level HDL implementation for simulation, which prolongs the
development cycle and creates a new kind of semantic gap between
the high-level host language and the low-level HDL simulation.
HDL simulation means designers are limited in the host-language
features they can use for online debugging, instrumentation, and
profiling. Designers must either manually write test benches in the
low-level HDL or use a limited “generator-friendly” subset of the
host language to implement test benches. These challenges have
inspired completely unified hardware generation and simulation
frameworks (HGSFs) where parameterization, static elaboration,
test bench generation, behavioral modeling, and a simulation en-
gine are all embedded in a general-purpose high-level language
(e.g., Java in JHDL [6], Haskell in CλaSH [3], Python inMyHDL [11],
PyRTL [9], Migen [19], PyHDL [13]). Our previous work on PyMTL
demonstrated the potential for a Python-based HGSF to improve
the productivity of hardware design and verification [17].

Section 2 compares the simulation performance of traditional
HDLs, state-of-the-art HGFs, and emerging HGSFs. Our results sug-
gest that while HGSFs can close the semantic gap present in other
approaches, HGSFs also suffer from significantly slower simulation
performance. For both small and large designs, highly optimized
HGSFs are still typically 10× slower than HDL simulation. The high-
est performing HGSFs use: (1) general-purpose just-in-time (JIT)
compilers that are not optimized for HGSFs [8]; or (2) highly special-
ized JIT-compiled simulators driven from the host language [9, 17].
Unfortunately, these techniques cannot completely close the perfor-
mance gap, and/or they reintroduce the semantic gap (i.e., mixing
the host language and JIT-compiled simulation). This in turn un-
dermines the productivity benefits of using an HGSF.

In this paper, we introduce Mamba, a new version of PyMTL
that has been carefully designed to close the performance gap in
productive hardware development frameworks. Our key insight is
the need to deeply co-optimize the HGSF and the underlying general-
purpose JIT compiler. Section 3 provides background on state-of-the-
art meta-tracing JIT compilers. Section 4 describes several novel
JIT-aware HGSF as well as HGSF-aware JIT techniques, and then
quantitatively compares their impact on multiple designs. Section 5
compares RISC-V single- and multi-core designs implemented using
Verilog, PyMTL [17], and Mamba. Our results suggest Mamba is
able to match the performance of commercial HDL simulators and
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Figure 1: Qualitative Comparison of Hardware Development Workflows – (a) traditional HDL (e.g., Verilog); (b) hardware prepro-
cessing frameworks (HPF) mix a high-level language and a low-level HDL (e.g., Perl mixed with Verilog in Genesis2 [23]); (c) hardware
generation frameworks (HGF) use a single host language for parameterization, static elaboration, TB generation, and behavioral modeling,
but must still use low-level HDL-based simulation (e.g., hardware generation with Scala in Chisel [4]); (d) hardware generation and simulation
frameworks (HGSF) also use a simulation engine in the host language (e.g., hardware generation and simulation with Python in PyMTL [17]).
DUT = design under test; DUT’ = generated DUT; TB = test bench; TB* = TB with limited functionality; TB’ = generated TB; Sim = simulation.

is 10× faster than existing HGSFs even when simulating more
complex designs. While this paper explores these techniques within
the context of Mamba, our work also sheds light on performance
optimization opportunities in other HGSFs.

This paper makes three technical contributions: (1) we describe
five JIT-aware HGSF techniques (static scheduling, schedule un-
rolling, heuristic topological sort, trace breaking, and block consol-
idation); (2) we describe two HGSF-aware JIT techniques (support
for performance-critical data types and huge loops); and (3) we
introduce Mamba which uses these techniques to match the per-
formance of commercial HDL simulators while maintaining the
productivity benefits of using a single host language for param-
eterization, static elaboration, test bench generation, behavioral
modeling, and simulation.

2 COMPARISON OF HARDWARE
DEVELOPMENTWORKFLOWS

In this section, we qualitatively and quantitatively evaluate four
different kinds of hardware development workflows (see Figure 1).
Our quantitative evaluation uses a 64-bit radix-4 iterative divider
implemented at the register-transfer level (RTL) in six different hard-
ware development frameworks (Verilog, Chisel [4], MyHDL [11],
PyMTL [17], PyRTL [9], Migen [19]) with different kinds of sim-
ulators (e.g., ahead-of-time compiled, interpreted, JIT compiled).
To ensure an apples-to-apples comparison, we implemented the
iterative divider in each framework in a very similar way using a
structural datapath and finite-state-machine control unit. Figure 2
shows the performance of simulating the divider using identical
random inputs for 1B cycles assuming the divider is busy: (1) 100%
of the time; and (2) only 10% of the time.

Hardware Description Languages – Figure 1(a) shows a tradi-
tional HDL workflow where the designer: manually writes both the
design under test (DUT) and test bench (TB) in Verilog; compiles the
DUT and TB into a simulator; uses the simulator to iteratively verify
and evaluate the DUT; and eventually pushes the DUT through an
FPGA/ASIC toolflow. Figure 2(a) shows the simulator performance
of the hand-written Verilog for the iterative divider. CVS1, one of the
fastest commercial Verilog simulators, achieves 1.2–2.9M simulated
cycles/second (CPS). Icarus, an open-source event-driven Verilog

1Tool vendor anonymized due to license agreement.

simulator [14], is well known to be relatively slow, however, Verila-
tor, an open-source tool for translating synthesizable Verilog into a
compiled C++ simulator [24], achieves an impressive 15–18MCPS.
Verilator requires C++ TBs and significantly longer compile times
on larger designs (e.g., several minutes); it is more often used for
virtual prototyping as opposed to iterative development.

Hardware Preprocessing Frameworks – Figure 1(b) shows
anHPFworkflow usingGenesis2 [23] where the designer: writes the
DUT and TB in a mix of Perl and Verilog; uses Perl to preprocess the
DUT and TB into pure Verilog; and then transitions to the traditional
HDL workflow. HPF workflows have similar simulator performance
to HDL workflows since they use the exact same HDL simulators.
A critical weakness of HPFs is that the high-level language acts as
a simple text preprocessor without any understanding of hardware
semantics. As shown in Figure 1(b), the iterative development cycle
(i.e., designer→DUT→ generated DUT→ simulation→ designer)
stretches across two languages further increasing the semantic gap.

Hardware Generation Frameworks – Figure 1(c) shows an
HGF workflow using Chisel [4] where the designer: writes the DUT
and TB in Scala using the Chisel library; executes the Scala pro-
gram to generate a Verilog DUT and TB; and then transitions to
the traditional HDL workflow. A key feature of HGFs is the abil-
ity to completely embed parameterization, static elaboration, TB
generation, and behavioral modeling in a unified high-level “host”
language. However, Chisel only supports rather limited “generator-
friendly” TBs, so designers often manually write more sophisticated
Verilog TBs. HGFworkflows can also create a potentially frustrating
semantic gap by stretching the iterative development cycle across
multiple languages (e.g., Scala and Verilog). Figure 2(b) shows the
simulator performance of the Chisel-generated Verilog for the iter-
ative divider, which is comparable to HDL workflows as expected.

Hardware Generation and Simulation Frameworks – Fig-
ure 1(d) shows an HGSF workflow using PyMTL [17] where the
designer: writes the DUT and TB completely in Python using the
PyMTL library; uses Python-based simulation to verify and evalu-
ate the DUT; and only transitions to the traditional HDL workflow
to push the DUT through an FPGA/ASIC toolflow. A key feature
of HGSFs is the ability to use a simulation engine written in the
host language to drastically reduce the iterative development cycle
and eliminate any semantic gap. The designer avoids crossing any
language boundaries for development, testing, and evaluation, and
can use the complete expressive power of the host language for
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Figure 2: Quantitative Comparison of Hardware Development Workflows – Simulator performance for a 64-bit radix-4 iterative
divider implemented at the register-transfer level. Results for identical random inputs for 1B cycles assuming the divider is active: (1) 100%
of the time; and (2) only 10% of the time. Chisel = Chisel-generated Verilog; Handwritten = hand-written Verilog; CVS = commercial Verilog
simulator; CSim = hybrid C/C++ compiled simulation; CPy = CPython. See Section 5 for details on the simulation platform.

verification, debugging, instrumentation, and profiling. Figure 2(c)
shows the simulator performance of PyMTL for the iterative di-
vider. Simulation using CPython, the reference Python interpreter,
is 150× slower than CVS at 100% load. PyMTL uses an event-based
simulator that dynamically schedules combinational blocks using
an event queue so the average work per cycle is reduced under
light load. PyMTL can improve performance by 14–20× using PyPy,
a state-of-the-art JIT compiler for general-purpose Python pro-
grams [8]. PyMTL can further improve performance by translating
RTL designs into Verilog, translating this Verilog into C++ with
Verilator, compiling this C++ into a shared library, and then dynam-
ically linking this library into the original PyMTL program. Overall,
PyMTL is able to close the performance gap to less than 10× on this
small design, although Section 5 suggests slowdowns of ≈10× are
more reasonable for larger designs. Figure 2(d–f) shows the simula-
tor performance of MyHDL [17], PyRTL [9], and Migen [19]. These
Python-based HGSFs have their own unique approach to hardware
modeling, but all three have dismal performance with CPython and
relatively low performance even with PyPy. PyMTL and PyRTL’s
support for specialized JIT-compiled simulators produces modest
performance improvements but also begins to reintroduce the se-
mantic gap by requiring designers to at least on some level interact
with multiple languages.

Other Approaches – SystemC [21], a set of C++ classes and
macros for system-level design, is also an HGSF, but uses a less pro-
ductive high-level language compared to Python-based HGSFs. As
a result, SystemC is usually used for behavioral simulation and HLS,
as opposed to RTL modeling and hardware generation, which is the
focus of this work. Bluespec [20] uses a very different approach that
combines a new HDL based on guarded atomic actions, limited HLS,
and powerful static elaboration mechanisms. This work focuses
on less radical approaches to improving the productivity of more
traditional RTL design flows.

3 BACKGROUND ON META-TRACING JITS
Many of the high-level programming languages used in HGSFs
are dynamic languages. These languages typically include: light-
weight syntax; dynamic typing of variables; managed memory and
garbage collection; rich standard libraries; interactive execution
environments; and advanced introspection and reflection capabili-
ties. These features are critical to the implementation of productive
HGSFs, but these features are also the root cause of lowHGSF perfor-
mance. These languages traditionally use interpreters to implement

a virtual machine that closely aligns with the language semantics,
but as seen in Figure 2(c-f), interpreted code can be many orders-
of-magnitude slower than statically compiled code. Dynamic lan-
guages use JIT-optimizing virtual machines to apply ahead-of-time
(AOT) compiler techniques at run-time. Co-optimizing the HGSF
and the JIT is the key to achieving peak performance while main-
taining HGSF productivity benefits. In this paper, we co-optimize
the HGSF and the PyPy meta-tracing JIT for Python [1, 8].

Tracing JITs – Tracing JITs start by interpreting the program
and profiling the executed code to find frequently executed loops.
Upon identifying a hot loop, the interpreter records the trace of the
executed operations of one loop iteration. For better performance
through type specialization, the trace also includes the concrete
types of variables that were observed as the trace was recorded.
This trace is then fed to the optimization engine to generate efficient
machine code. Note that the trace is sequential and represents only
one of the many possible paths. To ensure correctness, guards are
placed at every possible point where another code path is possible,
e.g., at conditional branches in the executed program or type checks
to ensure the actual types match the recorded types. When a guard
fails the execution immediately falls back to the interpreter and
a new path may be traced and compiled starting from the failing
guard if the guard has failed many times. A bridge is used to connect
the original and new traces.

Meta-Tracing JIT – PyPy uses a meta-tracing JIT approach to
build its tracing JIT compiler. Unlike a traditional tracing JIT com-
piler that records the executed operations in the application, the
meta-tracing JIT compiler records the operations performed by the
interpreter as it interprets the application. This approach separates
the complicated JIT compiler machinery from the interpreter imple-
mentation and allows easily re-targeting the JIT compiler for other
application languages or extensions. In PyPy’s case, the interpreter
is described in a statically typed subset of the Python language
called RPython, and the RPython toolchain will automatically at-
tach the meta-tracing JIT compiler to the interpreter. See [1, 8] for
more details on the PyPy meta-tracing JIT.

JITWarm-Up – A JIT compiler can spend significant time inter-
preting, analyzing, and tracing various code paths before actually
generating JIT-compiled machine instructions for a frequently ex-
ecuted loop. This initial JIT warm-up is a key source of overhead,
although hopefully this overhead is amortized by spending most of
the steady-state execution time in JIT-compiled code.
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Technique Divider 1-Core 32-core

Event-Driven 24K CPS 6.6K CPS 65 CPS

JIT-Aware HGSF
+ Static Scheduling 13× 2.6× 1.1×
+ Schedule Unrolling 16× 24× 0.2×
+ Heuristic Toposort 18× 26× 0.3×
+ Trace Breaking 19× 34× 1.5×
+ Consolidation 27× 34× 42×

HGSF-Aware JIT
+ RPython Constructs 96× 48× 61×
+ Support Huge Loops 96× 49× 67×

Table 1: Mamba Performance – The baseline is event-
driven simulation in Mamba. Each row adds a new tech-
nique upon all previous ones. All results are with PyPy.
CPS = simulated cycles per second.

4 THE MAMBA HGSF
Like earlier versions of PyMTL, Mamba supports behavioral model-
ing using concurrent structural composition, positive-edge-triggered
update blocks, and combinational update blocks. Mamba’s syn-
tax is similar in spirit to PyMTL. Mamba also leverages Python’s
built-in reflection features, particularly abstract-syntax-tree (AST)
self-parsing, to determine which variables are read or written in
an update block. Sensitivity information is constructed based on
readers/writers of the same variable in different blocks.

Figure 2(g) shows the simulator performance of Mamba for the
iterative divider. At 100% load, Mamba is 2× faster than CVS, 20×
faster than PyMTL, and 8× faster than PyRTL. The key to Mamba’s
performance is its co-optimization of the HGSF and JIT which
results in a speedup of 124× speedup over CPython. Table 1 lists
the five JIT-aware HGSF techniques and the two HGSF-aware JIT
techniques and reports the incremental performance improvement
of each technique. Table 1 includes results for the iterative divider
from Section 2 and a simple single- and multi-core RISC-V design
described in more detail in Section 5.

4.1 JIT-Aware HGSF
As a starting point, we implemented event-driven simulation in
Mamba using a very similar technique to PyMTL. Table 1 shows the
performance of event-driven Mamba simulation for the iterative
divider. Like PyMTL, we use two nested loops: an outer loop for
simulated cycles, and an inner loop over an event queue of combi-
national update blocks. Because each iteration of the inner loop is a
different update block, the tracing JIT compiles a different trace for
each of these update blocks. The tracing JIT will then insert a guard
at the beginning of each trace to check if that trace is compiled for
the called update block. Figure 3(a) illustrates this scenario using
a cartoon representation of traces, guards, and bridges. Unfortu-
nately, these guards create a pathological chain of bridges for the
inner loop. Executing the n-th compiled update block will result in
failing the first n − 1 guards. In other words, the number of guard
failures in an entire simulated cycle scales quadratically with the
total number of update blocks, which becomes the scaling bottle-
neck. Small traces for each individual update block also prevents
the compiler from performing escape analysis to remove unneces-
sary memory operations. Finally, enqueuing dependent blocks only

when a signal’s value changes requires an extra data-dependent
check after every assignment. So while event-driven simulation
can be efficient when most signals are stable, it can also create a
perfect storm of challenges for tracing JITs. The JIT-aware HGSF
techniques described in this section help mitigate many of these
challenges.

Static Scheduling – Instead of event-driven simulation, Mamba
statically schedules update blocks. While static scheduling has been
shown to improve the performance of C++-based simulation frame-
works [12, 22], we argue that static scheduling is particularly impor-
tant in Python-based HGSFs for two reasons: (1) static scheduling
avoids bridges due to data-dependent checks on every signal assign-
ment; and (2) static scheduling paves the way for using additional
techniques to increase the length of each trace. The Mamba exe-
cution semantics require each update block to be executed exactly
once in each cycle. This enables a static fixed-order linear schedule
to be generated at elaboration time. We leverage the sensitivity
information to schedule the update blocks correctly: an update
block that writes x should be scheduled before all blocks that read
x . We use a topological sort to serialize the dependency graph into
a total order of blocks. The topological sorting can succeed only if
the directed graph is acyclic (DAG). Thus designers must not create
inter-dependencies between combinational blocks. The inner loop
simply iterates over the static schedule. Note that this does not
change the meta-trace patterns in Figure 3(a); this simply changes
the way in which execute the corresponding update blocks. Table 1
shows that this approach improves the performance by 1.1–13×
over event-driven simulation. The concern for static scheduling is
that all update blocks are executed regardless of activity. However,
a tracing JIT can still optimize a hot path used under light load to
improve performance. As shown in Figure 2, Mamba is 1.5× faster
under 10% load vs. 100% load.

Schedule Unrolling – Static scheduling makes it possible to
eliminate the pathological chain-of-bridge pattern in the inner loop
by unrolling this loop into a sequence of update block calls. Ta-
ble 1 shows that this improves performance by 1.2–9× compared
to static scheduling without inner-loop unrolling for the divider
and the 1-core design. Figure 3(b) illustrates how static scheduling
and schedule unrolling get rid of the chain-of-bridge pattern but
increase the overall trace length.
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Heuristic Topological Sort –Unfortunately, schedule unrolling
can create an exponential number of bridges due to data-dependent
control flow within each update block. Every code path permu-
tation due to control flow in update blocks (A/A’ and B/B’/B” in
Figure 3(b)) can create a new bridge. In other words, schedule
unrolling introduces a new pathological pattern that can lead to
serious performance degradation in larger designs (see 32-core in
Table 1). To address this problem, we observe that there are multiple
valid topological sorts for any given DAG, and each ordering can
produce different guard/bridge behavior in our scenario. For exam-
ple, Figure 3(c) illustrates an ordering with fewer guards and bridges
(and a smaller instruction-cache footprint) compared to Figure 3(b).
We use a heuristic to schedule update blocks with potentially more
guards as late as possible. The stack used in the topological sort is
replaced with a priority queue where each update block’s priority is
the number of if/elif statements in that block counted using AST
self-parsing. Table 1 shows that this can improve the performance
by 10–30% over basic schedule unrolling.

Trace Breaking – A large number of guards and bridges is still
possible in more complex designs. To further control the number
of guards and bridges, we use Python-level JIT hints to break long
traces into multiple smaller traces. These application-level hints are
provided by PyPy to control the JIT compilation process, and they
can be used to prevent tracing in certain parts of the application.
During the topological sort, we pack update blocks into a meta-
update block. A meta-update block is a sequence of one or more
update blocks that do not include any if/elif statements followed
by a final update block which does include an if/elif statement. A
meta-update block ends with a trace-breaking hint. This technique
essentially limits the number of if/elif statements within any
given trace (see Figure 3(d)). Table 1 shows this technique has amore
significant impact on larger designs, e.g., improving performance
by 5× for the 32-core design over heuristic topological sort.

BlockConsolidation –Despite the techniques described above,
the size of JIT-compiled code scales with the design size due to the
nature of JIT compilation: the same update block from different
instances is JIT-compiled individually. This problem is less promi-
nent in static languages because different instances of the same
module will likely reuse the same compiled assembly code. Block
consolidation is a new technique that deduplicates different in-
stances of an update block in a JIT trace. We modify the topological
sort to identify different instances of the same update block and to
then schedule these instances together. We group them into a new
nested loop that iterates over these different instances by calling
the same update block with different parameters in each iteration.
Table 1 shows that large designs can significantly benefit from block
consolidation, e.g., improving performance by 28× for the 32-core
design over trace breaking.

4.2 HGSF-Aware JIT
The previous section described techniques to improve the perfor-
mance of an HGSF when using a general-purpose meta-tracing JIT.
In this section, we describe two techniques to improve performance
by making the JIT specialized for the HGSF.

Meta-Tracing the Performance-Critical Constructs – Al-
though the PyPy JIT compiler can run arbitrary Python code, native
Python constructs may not be the best fit for HGSFs. For exam-
ple, fixed-bit-width data types are used extensively in HGSFs, but
they are not natively supported by Python. HGSF designers must
emulate slicing and two’s complement arithmetic using integer

arithmetic. This increases warm-up time, requires redundant arith-
metic operations, and creates excessive bridges due to dynamic type
casting. We implement a fixed-bit-width data type in RPython as a
proof of concept. Other performance-critical constructs (e.g., byte-
addressable memory) can also be implemented in RPython. The key
is the meta-tracing approach that enables writing Python-like code
exactly once. We exploit the invariant that the bit-width of a signal
does not change during simulation; RPython enables annotating
the bitwidth as immutable. We are also able to directly manipulate
the underlying integer arrays at the RPython level. These specializa-
tions significantly eliminate potential bridges. Table 1 shows that
this technique improves the performance by an additional 1.5–3.5×
on top of the JIT-aware HGSF techniques.

Support for Huge Loops – The techniques described in Sec-
tion 4.1 improve performance but also often increase the total size of
all traces. PyPy’s VMProf tool is only useful for identifying Python-
level bottlenecks, so we use the Linux perf tool to identify the
microarchitectural implications of these larger instruction cache
footprints. Experiments show that for the 8-core (1-core) simulation
in Section 5, 3% (0.2%) of all instruction fetches incur an instruction
TLB load, among which 22% (2.6%) are iTLB misses. The need for
larger TLB reach motivates us to modify PyPy to allocate 2MB huge
pages for traces and to fall back to 4 KB pages if Linux’s huge-page
support is unavailable. As a proof of concept, the removal of exces-
sive iTLB accesses (confirmed by perf ) improved the performance
of the 32-core design by 10% as shown in Table 1.

5 CASE STUDY: RISC-V MULTICORE
We present an apples-to-apples simulation performance compari-
son of 1–32 RTL RV32IM [2] five-stage cores implemented in-house
in Verilog, PyMTL, and Mamba using a structural datapath and
pipelined control unit. The cores run a parallel matrix multiplica-
tion application kernel using a lightweight parallel runtime. We
simulate Verilog with CVS, Icarus, and Verilator, and we use PyPy
for PyMTL, PyMTL-CSim, and Mamba. The multi-core does not
include caches nor an interconnection network and is simulated
with a behavioral test memory implemented in Verilog for CVS and
Icarus, C++ for Verilator, and Python for PyMTL and Mamba. ASIC
synthesis results show that each core can be implemented in around
10 K gates. This design is sufficient for exploring the scalability of
various hardware development frameworks, and more complex
system-on-chip designs are left as future work. The simulation
platform includes an Intel E3-1240 v5 processor and 32GB DDR4-
2400 memory running Ubuntu 14.04 Server, gcc-4.8.5, PyPy-5.8,
Verilator-3.876, and Icarus-11.0.

Compilation/Warmup – Figure 4(a) and (b) reflect the iterative
development cycle for simulating a specific number of instructions.
This includes all overheads: CVS, Icarus, Verilator, and PyMTL-
CSim compile times; PyMTL and Mamba elaboration times; and
PyMTL and Mamba JIT warmup times. Intuitively, the leftmost
points (i.e., short simulations) are affected the most by these over-
heads. Overall, CVS and Icarus have relatively low compilation
overhead (1–2 s for 1-core, 3 s for 32-core), whereas Verilator has
larger compilation overhead (4–5 s for 1-core, 130 s for 32-core).
PyMTL and Mamba have short elaboration times for one core (<1s)
but longer elaboration times for 32 cores (6-8s). The JIT warmup
overhead is difficult to quantify; both PyMTL and Mamba warm
up within at most 105 simulated cycles, and the absolute warm-up
time is shorter in Mamba compared to PyMTL.
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Figure 4: Performance of Simulating RISC-V Multicore – Each point in (a) and (b) is the average simulated cycle per second (CPS)
taking compilation overhead into account; (c) captures the scalable performance: steady state CPS multiplied by number of simulated cores.

Performance – When simulating a 1-core system, Mamba exe-
cutes 332KCPS which is slightly faster than CVS and significantly
faster than the other frameworks. Mamba’s 1-core performance
is equivalent to 148K committed instructions per second. When
simulating a 32-core system Mamba is 2.1× slower than CVS but
again significantly faster than the other frameworks. Overall these
results demonstrate that Mamba nearly matches the performance
of CVS for both small and large designs for both short and long
simulations. While Verilator can achieve impressive performance
for long simulations, it can be difficult to amortize Verilator’s long
compile times for short simulations potentially precluding using
Verilator in agile test-driven development.

Scalability – Figure 4(c) summarizes the steady-state perfor-
mance of all frameworks with a gradually increasing number of
simulated cores. We multiply the simulated cycles per second by
the number of cores to reflect the simulation performance scaling
with the size of design. A flat line indicates perfect scalability (i.e., a
2× larger design results in a 2× reduction in CPS). CVS and Icarus
have good scalability, whereas Verilator appears to be less scalable.
The source code size generated by Verilator scales up linearly with
the number of cores, potentially harming the quality of C++ com-
pilation. Mamba is faster than CVS at 1-core, and only 2× slower at
32-core. PyMTL scales better than PyMTL-CSim and Mamba, but
its absolute performance is relatively low.

6 CONCLUSION
This paper introduced Mamba, a new version of PyMTL that has
been carefully designed to close the performance gap in produc-
tive hardware development frameworks. Our key insight is the
need to deeply co-optimize the HGSF and the underlying general-
purpose JIT compiler. Several novel JIT-aware HGSF as well as
HGSF-aware JIT techniques enable Mamba to match the perfor-
mance of a commercial HDL simulator and to improve perfor-
mance compared to prior HGSFs by 10×. While this paper ex-
plores these techniques within the context of Mamba, our work
also sheds light on performance optimization opportunities in
other HGSFs. The source code used in this paper is published at
https://github.com/cornell-brg/mamba-dac2018.
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