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Abstract
RISC-V is a new instruction-set architecture that encour-

ages users to design new domain-specific extensions for their
needs. This necessitates RISC-V instruction-set simulators
that allow productive development, productive extension, and
productive instrumentation. In addition, these simulators
need to be high-performance to allow simulating real-world
benchmarks. There is a productivity-performance gap due
to lack of tools that achieve both aspects. Pydgin is a new
instruction-set simulator that aims to bridge this gap by its
many productivity features and performance that makes it the
fastest currently available open-source RISC-V simulator.

1. Introduction
Instruction-set simulators (ISSs) are used to functionally

simulate instruction-set architecture (ISA) semantics. ISSs
play an important role in aiding software development for ex-
perimental hardware targets that do not exist yet. ISSs can
be used to help design brand new ISAs or ISA extensions for
existing ISAs. ISSs can also be complemented with perfor-
mance counters to aid in the initial design-space exploration
of novel hardware/software interfaces.

Performance is one of the most important qualities for
an ISS. High-performance ISSs allow real-world benchmarks
(many minutes of simulated time) to be simulated in a rea-
sonable amount of time (hours of simulation time). For
the simplest ISS type, an interpretive ISS, typical simulation
times are between 1 to 10 millions of instructions per sec-
ond (MIPS) on a contemporary server-class host CPU. For a
trillion-instruction-long benchmark, a typical length found in
SPEC CINT2006, this would take many days of simulation
time. Instructions in an interpretive ISS need to be fetched,
decoded, and executed in program order. To improve the per-
formance, a much more sophisticated technique called dy-
namic binary translation (DBT) is used by more advanced
ISSs. In DBT, the target instructions are dynamically trans-
lated to host instructions and cached for future use. Whenever
possible, these already-translated and cached host instructions
are used to amortize much of the target instruction fetch and
decode overhead. DBT-based ISSs typically achieve perfor-
mance levels in the range of 100s of MIPS, lowering the simu-
lation time to a few hours. QEMU is a widely used DBT-based
ISS because of its high performance, which can achieve 1000
MIPS on certain benchmarks, or less than an hour of simula-
tion time [2].

Productivity is another important quality for ISSs. A pro-
ductive ISS allows productive development of new ISAs; pro-
ductive extension for ISA specialization; and productive cus-
tom instrumentation to quantify the performance benefits of
new ISAs and extensions. These productivity features might

not be a high priority for the users of proprietary ISAs. Pro-
prietary ISAs tend to be specified by a single vendor, and
aim to satisfy the use cases of all users. These users might
not need their ISS to be productive for extensions and instru-
mentation because non-standard ISA extensions are uncom-
mon. Contrary to this, RISC-V is a new ISA that embraces
the idea of specifying a minimalist standard ISA and encour-
aging users to use its numerous mechanisms for extensions
for their domain-specific needs [20]. The users of RISC-V
would likely need their ISS to be productive for extension and
instrumentation while still needing the high-performance fea-
tures to allow them to run real-world benchmarks. There is a
lack of tools to bridge this productivity-performance gap, and
the RISC-V community is especially affected by it.

There has been previous ISSs that aim to achieve both pro-
ductivity and performance. Highly productive ISSs typically
use high-level architecture description languages (ADLs) to
represent the ISA semantics [6, 11, 14, 15, 18]. However, to
achieve high performance, ISSs use low-level languages such
as C, with a custom DBT, which requires in-depth and low-
level knowledge of the DBT internals [5, 7, 9, 10, 17, 21]. To
bridge this gap, previous research have focused on techniques
to automatically translate high-level ADLs into a low-level
language where the custom DBT can optimize the perfor-
mance [12, 13, 19]. However, these approaches tend to suffer
because the ADLs are too close to low-level C, not very well
supported, or not open source.

A similar productivity-performance tension exists in the
programming languages community. Interpreters for highly
productive dynamic languages (e.g., JavaScript and Python)
need to be written in low-level C/C++ with very compli-
cated custom just-in-time compilers (JITs). A notable excep-
tion to this is the PyPy project, the JIT-optimized interpreter
for the Python language, which was written in a reduced ty-
peable subset of Python, called RPython [1, 3, 4]. To trans-
late the interpreter source written in RPython to a native bi-
nary, the PyPy community also developed the RPython trans-
lation toolchain. The RPython translation toolchain trans-
lates the interpreter source from the RPython language, adds
a JIT, and generates C to be compiled with a standard C com-
piler. Pydgin is an ISS written in the RPython language, and
uses the RPython translation toolchain to generate a fast JIT-
optimized interpreter (JIT and DBT in the context of ISSs are
very similar; we use both terms interchangeably in this paper)
from high-level architectural descriptions in Python [8]. This
unique development approach of Pydgin and the productivity
features built into the Pydgin framework make this an ideal
candidate to fill in the ISS productivity-performance gap.

In the remainder of this paper, Section 2 provides an intro-
duction to the Pydgin ADL and Pydgin framework, Section 3
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1 class State( object ):
2

3 def __init__( self, memory, reset_addr=0x400 ):
4

5 self.pc = reset_addr
6 self.rf = RiscVRegisterFile()
7 self.mem = memory
8

9 # optional state if floating point is enabled
10 if ENABLE_FP:
11 self.fp = RiscVFPRegisterFile()
12 self.fcsr = 0
13

14 # used for instrumentation, not arch. visible
15 self.num_insts = 0
16

17 # state for custom instrumentation (number of
18 # additions, number of misaligned memory operations,
19 # list of all loops)
20 self.num_adds = 0
21 self.num_misaligned = 0
22 # a dict that returns 0 if the key is not found
23 self.loop_dict = DefaultDict(0)

Figure 1: Simplified RISC-V Architectural State Description – State
for instrumentation can also be added here. The last three fields,
num_adds, num_aligned, and loops_dict are examples of custom
instrumentation state.

provides examples of Pydgin productivity, Section 4 high-
lights the performance of Pydgin, and Section 5 concludes.

2. Pydgin ADL and Framework

Pydgin uses the RPython language as the basis of its em-
bedded ADL. RPython has minimal restrictions compared
to Python, such as dynamic typing not being allowed, how-
ever it still inherits many of the productivity features of full
Python: simple syntax, automatic memory management, and
a large standard library. Unlike other embedded ADL ap-
proaches that use a low-level host language such as C, archi-
tecture descriptions in Pydgin can make use of many of the
high-level features of the Python host language. The ADL
in Pydgin consists of architectural state, instruction encod-
ings, and instruction semantics. The architectural state uses
a plain Python class as shown in Figure 1. The Pydgin frame-
work provides templates for various data structures such as
memories and register files, and ISA implementers can ei-
ther use these components directly or extend them to special-
ize for their architecture. For example, the RISC-V register
file special-cases x0 to always contain the value 0. Figure 2
shows how instruction encodings are defined in Pydgin using
a user-friendly Python list of instruction name and a bitmask
consisting of 0, 1, or x (for not care). Using this list, the Pyd-
gin framework automatically generates an instruction decoder.
When encountering a match, the decoder calls an RPython
function with the name execute_<inst_name>. Figure 3
shows examples of execute functions that implement the in-
struction semantics. The execute functions are plain Python
functions with two arguments: the state object and an instruc-
tion object that provides convenient access to various instruc-
tion fields such as the immediate values. The execute function
can access and manipulate the fields in the state and instruc-
tion to implement the expected behavior.

1 encodings = [
2 # ...
3 [ 'xori', 'xxxxxxxxxxxxxxxxx100xxxxx0010011' ],
4 [ 'ori', 'xxxxxxxxxxxxxxxxx110xxxxx0010011' ],
5 [ 'andi', 'xxxxxxxxxxxxxxxxx111xxxxx0010011' ],
6 [ 'slli', '000000xxxxxxxxxxx001xxxxx0010011' ],
7 [ 'srli', '000000xxxxxxxxxxx101xxxxx0010011' ],
8 [ 'srai', '010000xxxxxxxxxxx101xxxxx0010011' ],
9 [ 'add', '0000000xxxxxxxxxx000xxxxx0110011' ],

10 [ 'sub', '0100000xxxxxxxxxx000xxxxx0110011' ],
11 [ 'sll', '0000000xxxxxxxxxx001xxxxx0110011' ],
12 # ...
13

14 # new instruction encodings can be added by for
15 # example re-using custom2 primary opcode reserved
16 # for extensions
17 #['custom2', 'xxxxxxxxxxxxxxxxx000xxxxx1011011' ],
18 [ 'gcd', 'xxxxxxxxxxxxxxxxx000xxxxx1011011' ],
19 ]

Figure 2: RISC-V Instruction Encoding – Examples of instruction
encodings showing some of the integer subset instructions. Encod-
ings are defined using the instruction name and a bitmask consisting
of 0, 1, and x (for not care). Reserved primary opcodes such as
custom2 can be used for instruction set extensions.

The Pydgin framework provides the remaining ISA-
independent components to complete the ISS definition. In
addition to providing various templates for storage data struc-
tures, bit manipulation, system-call implementations, and
ELF-file loading facilities, the framework most importantly
includes the simulation loop. Figure 4 shows a simplified ver-
sion of the simulation loop, which includes the usual fetch, de-
code, and execute calls. The Pydgin framework is designed so
that ISA implementers and users would not need to modify the
framework for most use cases. Since the ADL and the frame-
work are written in RPython (a valid subset of Python), pop-
ular interpreters, debugging, and testing tools for Python can
be used out of the box for Pydgin. This makes Pydgin devel-
opment highly productive. Pydgin running on top of a Python
interpreter is unsurprisingly very slow (around 100 thousand
instructions per second), so this usage should be limited to
testing and debugging with short programs.

The performance benefits of Pydgin comes from using the
RPython translation toolchain. RPython is a typeable sub-
set of Python, and given an RPython source (e.g., PyPy or
Pydgin), the RPython translation toolchain performs type in-
ference, optimization, and code generation steps to produce
a statically typed C-language translation of the interpreter.
This C-language interpreter can be compiled using a stan-
dard C compiler to produce a native binary of an interpre-
tive ISS. This interpretive version of Pydgin manages to reach
10 MIPS, which is much faster than interpreting Pydgin on
top of a Python interpreter. However, the real strength of the
RPython translation toolchain comes from its ability to cou-
ple a JIT compiler alongside the interpreter to be translated.
The translated interpreter and the JIT compiler are compiled
together to produce a DBT-based interpreter. The DBT-based
interpreter can have significant speedups over the one without
DBT by optimizing for the common paths and removing un-
necessary computation. However, without communicating to
the framework what are the common paths, usually-true con-
ditions, and always-true conditions, enabling the JIT compiler
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1 # add-immediate semantics
2 def execute_addi( s, inst ):
3 s.rf[inst.rd] = s.rf[inst.rs1] + inst.i_imm
4 s.pc += 4
5 # count number of adds
6 s.num_adds += 1
7

8 # store-word semantics
9 def execute_sw( s, inst ):

10 addr = trim_xlen( s.rf[inst.rs1] + inst.s_imm )
11 s.mem.write( addr, 4, trim_32( s.rf[inst.rs2] ) )
12 s.pc += 4
13 # count misaligned stores
14 if addr % 4 != 0: s.num_misaligned += 1
15

16 # branch-equals semantics
17 def execute_beq( s, inst ):
18 old_pc = s.pc
19 if s.rf[inst.rs1] == s.rf[inst.rs2]:
20 s.pc = trim_xlen( s.pc + inst.sb_imm )
21 # record and count all executed loops
22 if s.pc <= old_pc: s.loop_dict[(s.pc, old_pc)] += 1
23 else:
24 s.pc += 4
25

26 # extension example: greatest common divisor
27 def execute_gcd( s, inst ):
28 a, b = s.rf[inst.rs1], s.rf[inst.rs2]
29 while b:
30 a, b = b, a%b
31 s.rf[inst.rd] = a
32 s.pc += 4

Figure 3: RISC-V Instruction Semantics – Examples of three RISC-
V instructions: addi, sw, and beq; and gcd as an example of
instruction-set extension implementing the greatest common divisor
algorithm. Instructions in gray are examples of custom instrumenta-
tion that can be added and are optional.

1 def instruction_set_interpreter( memory ):
2 state = State( memory )
3 while True:
4 inst = memory[ state.pc ] # fetch
5 execute = decode( inst ) # decode
6 execute( state, inst ) # execute

Figure 4: Simplified Pydgin Interpreter Loop

usually causes a slowdown due to additional overheads. The
assumptions and hints about the interpreter are added in the
form of annotations. Examples of these hints include the loca-
tion in the interpreted code (the PC), when a "loop" happens in
the interpreted code (backwards branches), and constant PC-
to-instruction guarantee for non-self-modifying code. These
hints are used by the JIT generator in the RPython translation
toolchain to optimize away unnecessary computation, primar-
ily for instruction fetch and decode and produces a DBT-based
ISS. Please see [8] for more details about the particular opti-
mizations we have used in Pydgin. The DBT-based Pydgin
ISS manages to improve the performance to 100s of MIPS.
Section 4 describes the performance results of Pydgin running
large RISC-V benchmarks.

3. Pydgin Productivity
Pydgin uses the RPython subset of standard Python in its

ADL, and can use off-the-shelf Python testing and debugging
tools. This makes developing implementations for new ISAs

productive. Even though it is hard to quantify these productiv-
ity benefits, as a rough anecdote, the first two authors of this
paper added RISC-V support to Pydgin over the course of nine
days, three of which were during a busy conference. Imple-
menting a simple (and slow) ISS in this duration is possible,
however implementing one that achieves 100+ MIPS of per-
formance is a testament to the productivity and performance
features of Pydgin.

Facilitating domain-specific extensions to the existing ISA
is a strength of RISC-V. These extensions require adding the
encoding and semantics of the new instructions to the ISS,
and the software stack to take advantage of these new in-
structions. Pydgin makes the ISS-side modifications produc-
tive. Line 18 in Figure 2 shows an example of adding a new
domain-specific greatest common divisor (gcd) instruction by
reusing the custom2 primary opcode reserved for extensions
such as this. Lines 26–32 in Figure 3 show adding the seman-
tics for the gcd instruction. Note that this particular example
does not require any new architectural state to be added.

Adding custom instrumentation productively to the ISS
is an important feature of Pydgin. Hardware and software
designers are often interested in how well a new ISA or
instruction-set extension performs running realistic bench-
marks. Software designers would be interested in knowing
how often these new instructions are used to ensure the soft-
ware stack is fully making use of the new features. Hardware
designers would be interested in knowing how software tends
to use these new instructions, with which arguments, in order
to design optimized hardware for the common case. Custom
instrumentation in Pydgin often involves adding a new state
variable as shown between Lines 14–23 in Figure 1. Here,
we illustrate adding counters or more sophisticated data struc-
tures to count number of executed instructions, number of ex-
ecuted addition instructions, number of misaligned memory
operations, and a histogram of all loops in the program. Fig-
ure 3 shows (in gray) how the new custom instrumentation
can be added directly in the instruction semantics with only a
few lines of code.

Productive development, extensibility, and instrumentation
in Pydgin are complemented with the performance benefits of
JIT compilation. Most of the JIT annotations necessary to use
the full power of the RPython JIT are in the Pydgin frame-
work, so the additions of the ADL automatically make use of
these. The additional instrumentation code will automatically
be JIT compiled. However, depending on the computational
intensiveness and frequency of the instrumentation code, there
will be a graceful degradation in performance.

We use Pydgin extensively in our research group. We are
often interested in different program phases and how do each
of these phases perform on a new hardware design. To en-
able phase-specific instrumentation, we can extend our bench-
marks to communicate with Pydgin the currently executing
phase and leverage Pydgin’s support for per-phase statistics.
We have also used Pydgin to experiment with instruction-set
specializations for novel algorithm and data-structure accel-
erators. For another project, we have used Pydgin to keep
track of control- and memory-divergence statistics of SIMD
and vector engines with different hardware vector lengths. We
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Figure 5: Performance Results – Pydgin without DBT, Pydgin with
DBT, and Spike running SPEC CINT2006 benchmarks.

have also used Pydgin to generate basic block vectors used by
the SimPoint algorithm [16] to determine samples to be sim-
ulated in detail using a cycle-level microarchitectural simula-
tor. Finally, we have used Pydgin to study interpreter, tracing,
garbage collection, and JIT-optimized phases of dynamic lan-
guage interpreters.

4. Pydgin Performance
We evaluated the performance of Pydgin, with and with-

out enabling the JIT, on SPEC CINT2006 benchmarks. We
used a Newlib-based GCC 4.9.2 RISC-V cross-compiler to
compile the benchmarks. We used system-call emulation
in Pydgin to implement the system calls. Some of the
SPEC CINT2006 benchmarks (400.perlbench, 403.gcc,
and 483.xalancbmk) did not compile due to limited system-
call and standard C-library support in Newlib, so we omitted
these. Figure 5 shows the performance results. As expected,
Pydgin without JIT achieves a relatively low performance of
10 MIPS across the benchmarks. The performance is fairly
consistent regardless of the benchmark, and this is a charac-
teristic of interpreter-based ISSs. Turning on the JIT in Pydgin
increases the performance to 90–750 MIPS range. This per-
formance point is high enough to allow running the reference
datasets of these benchmarks (trillions of instructions) over a
few hours of simulation time. Different patterns in the target
code is responsible for the highly varied performance, and this
is a characteristic of DBT-based ISSs.

To compare the performance of Pydgin to other ISSs for
RISC-V, Figure 5 shows the performance of Spike, the ref-
erence RISC-V ISS. Despite being an interpreter-based ISS,
Spike manages to achieve 40–200 MIPS, much faster than
non-DBT Pydgin. This is because Spike is heavily optimized
to be a very fast interpretive ISS, and employs some optimiza-
tion techniques that are typical of DBT-based interpreters. Ex-
amples of these optimizations include a software instruction
cache that stores pre-decoded instructions, a software TLB,
and an unrolled PC-indexed interpreter loop to improve host

branch prediction. These optimizations also cause the perfor-
mance to be similarly varied.

At the time of writing, the QEMU [2] port of RISC-V was
not available. We anticipate the eventual QEMU port will be
faster than Pydgin, however the fact that an up-to-date QEMU
RISC-V port does not yet exist is indicative of lack of produc-
tivity in performance-oriented ISSs. Pydgin’s strength lies in
combining productivity and performance.

5. Conclusions
We have introduced Pydgin from the perspective of its

RISC-V support and how it answers the unique requirements
of the RISC-V community. Extensibility is a major feature
in RISC-V for the domain-specific needs of its users. This
makes it necessary for the RISC-V ISSs to be highly pro-
ductive to develop, extend, and instrument, while also high-
performance to allow real-world benchmarks to be simulated
in reasonable amount of time. We believe Pydgin is the right
tool to uniquely combine productivity and performance and
be of use to many users of the RISC-V community.
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