
CO-OPTIMIZING HARDWARE DESIGN AND

META-TRACING JUST-IN-TIME COMPILATION

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Berkin Ilbeyi

May 2019



© 2019 Berkin Ilbeyi



CO-OPTIMIZING HARDWARE DESIGN AND

META-TRACING JUST-IN-TIME COMPILATION

Berkin Ilbeyi, Ph.D.

Cornell University 2019

Performance of computers has enjoyed consistent gains due to the availability of faster and cheaper

transistors, more complex hardware designs, and better hardware design tools. Increasing computing

performance has also led to the ability to develop more complex software, rising popularity of higher

level languages, and better software design tools. Unfortunately, technology scaling is slowing, and

hardware and software depend more on each other to continue deliver performance gains in the

absence of technology scaling. As single-threaded computing performance slows down, emerging

domains such as machine learning are increasingly using custom hardware. The proliferation of

domain-specific hardware requires the need for more agile hardware design methodologies. Another

trend in the software industry is the rising popularity of dynamic languages. These languages

can be slow, but improvements in single-threaded performance and just-in-time (JIT) compilation

have improved the performance over the years. As single-threaded performance slows down and

software-only JIT techniques provide limited benefits into the future, new approaches are needed to

improve the performance of dynamic languages.

This thesis aims to address these two related challenges by co-optimizing hardware design and

meta-tracing JIT compilation technology. The first thrust of this thesis is to demonstrate meta-

tracing JIT virtual machines (VMs) can be instrumental in building agile hardware simulators across

different abstraction levels including functional level, cycle level, and register-transfer level (RTL).

I first introduce an instruction-set simulator that makes use of meta-tracing JIT compilation to

productively define instruction semantics and encodings while rivaling the performance of purpose-

built simulators. I then build on this simulator and add JIT-assisted cycle-level modeling and

embedding within an existing simulator to achieve a very fast cycle-level simulation methodology.

I also demonstrate that a number of simulation-aware JIT and JIT-aware simulation techniques

can help productive hardware generation and simulation frameworks to close the performance gap

with commercial RTL simulators. The second thrust of this thesis explores hardware acceleration



opportunities in meta-tracing JIT VMs and proposes a software/hardware co-optimization scheme

that can significantly reduce dynamic instruction count in meta-tracing JIT VMs. For this, I

first present a methodology to study and research meta-tracing JIT VMs and perform a detailed

cross-layer workload characterization of these VMs. Then I quantify a type of value locality in JIT-

compiled code called object dereference locality, and propose a software/hardware co-optimization

technique to improve the performance of meta-tracing JIT VMs.
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CHAPTER 1

INTRODUCTION

The performance of a computer program depends on many factors: algorithms, programming

languages, compilers, and the underlying hardware. The performance of the underlying hardware in

turn depends on the process technology, architectures, and the computer-aided design (CAD) tools.

All of these factors have co-evolved significantly since the era of mainframes and minicomputers into

today’s wide spectrum of computer systems from embedded to cloud computing. This co-evolution

has been primarily fueled by Moore’s Law and Dennard Scaling, which have delivered exponentially

faster, smaller, and cheaper transistors. However, with Dennard Scaling breaking down, and Moore’s

Law slowing down, better hardware design tools and software/hardware co-design are increasingly

important to ensure that computer systems meet demands of the future.

1.1 Software/Hardware Co-Evolution

Figure 1.1 shows the software and hardware co-evolution trend over the past several decades. As

predicted by Moore’s Law, new process technologies reduced transistor feature sizes by a constant

ratio every 18 months to two years for roughly the same dollar budget [Moo65]. This effectively

leads to exponentially more transistors in a chip for the same cost. Similarly, Dennard Scaling

outlined a constant-factor scaling down of feature sizes, voltages, and gate capacitances [DGY

+
74],

which leads to exponentially faster transistors for roughly the same power budget. These two factors

combined gave hardware designers more and better transistors.

More transistors meant that more features could be moved to the same chip, increasing the

level of integration. Transitioning from mini-computers to micro-computers, more of the hardware

could be concentrated to fewer chips, until the entire processor could be built in a single chip. In

addition to building hardware for general-purpose computation, some of the transistors have been

specialized to enable hardware support for emerging domains. Initially, domain-specific units such

as the floating point unit (FPU) could be moved on-chip. More recently, systems-on-chip (SOCs)

combined all of the computing resources that an embedded system needs into a single chip. More

transistors also enabled more aggressive designs to improve the performance. Multiple arithmetic

and logic units (ALUs) were added to processors, additional auxiliary memories and logic were

added to coordinate multiple instructions to be executed concurrently, out-of-order, and in deep
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Figure 1.1: Software/Hardware Co-Evolution – The Part I arrow represents using state-of-the-art (JIT) compilers

to allow building better hardware design tools and is the first part of this thesis; the Part II arrow represents building

specialized hardware accelerators for higher level (dynamic) programming languages and is the second part of this

thesis.

pipelines [SS95, TEL95]. Sophisticated branch and value prediction techniques were implemented,

bookkeeping hardware was added to allow rollbacks in case of misspeculations [Smi81]. The

addition of many levels of coherent caches enabled memory systems to navigate the latency and

capacity trade-off. Homogeneous and heterogeneous many-core systems and graphical processing

units (GPUs), with scalable networks-on-chip, led to highly parallel hardware for workloads that

can take advantage of parallelism.

While hardware itself was getting cheaper, the design of the hardware was getting more ex-

pensive. The additional hardware to design and verify required the use of more numerous but

novice hardware designers. Whereas hardware design at its infancy only required small teams of

expert designers, the new hardware design paradigm required coordinating hundreds of engineers at

various skill levels working on various aspects of design space exploration, implementation, and

verification. Unfortunately, coordinating large teams of hardware designers is difficult, leading

to a productivity deficit. Coordinating these designers requires raising the level of abstraction of

hardware design. Instead of drawing polygons, first gate-level design, then register-transfer-level

(RTL) design became more popular. More recently, even higher levels of design such as high-level

synthesis (HLS) are gaining traction [CLN

+
11].

One downside of hardware design using higher levels of abstractions is that it can lead to a

performance deficit, where the hardware can be inferior in performance, area, or energy than one
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designed in a lower level of abstraction. This is especially true when a higher level of abstraction is

first developed, and the tools are at their infancy. However, high-level design is certainly much more

scalable across large teams of varied skill levels and enable better hardware engineering. Over time,

better computer-aided design (CAD) tools and algorithms are developed that target the higher levels

of abstraction, and close a major part of the performance deficit. With the help of advanced CAD

tools, hardware designed at a higher level is very competitive with, and often better than, hardware

designed at a lower level. To this day, some extremely performance-critical parts of the chip have

to be designed at gate- or polygon-level, but an average hardware designer seldom works at these

levels. With the combination of better hardware engineering, better CAD tools afforded through

better software engineering, and more transistors, increasingly faster computers were built.

A similar trend exists in software design as well. As computers were getting faster for the same

budget, legacy programs could be executed faster. The availability of cheap computing resources

led to the ability and demand to automate more tasks from different industries that were previously

done manually. More businesses started relying on electronic bookkeeping, reporting, and analysis

of their data. The proliferation of software created its own demand for more systems software

development to enable easier development of software and for programs to better work with each

other. Virtual memory support had to be implemented to coordinate multiple programs to run

reliably at the same time. Multi-user, time-sharing operating systems had to be developed so that

multiple users can use the same machine as if they are the only ones logged in. Networking and the

internet required efficient sharing of data across a diverse set of hardware. The rise of bad actors

required re-thinking the software architecture with a heavier emphasis on security and heavier use

of encryption. Graphical user interfaces and computer graphics required a new set of software

technologies to be developed (e.g., Self [HU94b]).

This led to a large proliferation of software engineers to meet the software development demand.

A higher proportion of these developers were novice developers and the tools and languages of the

time, e.g. assembly programming, were not scalable across large teams. This created a productivity

deficit in the software world as well. To bridge this deficit, higher level languages were developed.

Languages such as C required less boilerplate code to be written while still staying close to the

machine. These languages also enabled limited portability across multiple hardware architectures.

Later, object-oriented programming, e.g., with C++, enabled representing program logic and

data at a higher level. There was also a trend towards better defined application programming
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interfaces (APIs), data encapsulation, permission management, inheritance techniques to reduce

code duplication, and version control systems to enable more effective collaboration. Later still,

automatic memory management, e.g., with Java, made programming safer and more productive.

More recently, dynamic programming languages have been rising in popularity mostly due to their

advanced productivity features.

Analogous to the raised abstraction levels in hardware design, using higher level languages

causes a performance deficit. Especially during the infancy of a new language, there could be

significant performance degradation compared to a low-level language. For example, when C

was first developed, it did not have an optimizing compiler, so the performance could be much

worse than writing assembly. Similarly, Java originally did not have a just-in-time (JIT) compiler,

so its performance was much worse than C++. However, high-level languages enabled scalable

productivity for large teams of software developers, leading to better software engineering. This, in

turn, enabled the development of compilers with advanced optimizers. Better optimizing compilers

allow faster execution of programs, and importantly they close a major part of the performance

deficit. Today, assembly-level programming, just like drawing polygons, is often used only in

the most extremely performance critical parts of modern software, while the vast majority of

programmers write code at much higher levels.

It is important to note the synergy between hardware and software in this co-evolution. More

and more problems encountered by humans can be automated and solved using software running on

ever-faster processors. The software engineering improvements and higher level languages lead

to the development of more sophisticated CAD algorithms. These CAD algorithms can close the

performance deficit by raising the abstraction level used for hardware design. Designing hardware

in higher abstraction levels often outperforms hardware designed using lower abstraction levels.

Newer hardware design methodologies can help pick more optimal choices in the large design

space, and larger chips to be designed and verified at scale. With better hardware engineering

and improvements in process technology allows building faster computers, and this co-evolution

continues as long as Moore’s Law continues to deliver more transistors.
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1.2 The Present and Future of Hardware Design

Dennard Scaling has long stopped delivering faster transistors since the early 2000s. Furthermore,

Moore’s Law has been slowing down. Below, I present some of my observations and predictions on

how this might affect hardware design.

Large hardware designs will continue to be economical. Even though Moore’s Law is

slowing down, there is likely plenty of unrealized potential with the current economics of chips.

Over the decades, the pace of hardware design was not able to catch up with the available transistors

for a given cost. With better hardware engineering and domain-specific specialization, the currently

available transistors could be used more effectively. Furthermore, with newer process technologies

becoming far in between, slightly older technologies, which are still very competitive, might get

commoditized. As the research and development costs for these technologies are recouped, the

price per transistors will likely continue to fall into the future.

Single-threaded performance gains will come to an end. Since the end of Dennard Scaling

and stagnating maximum clock frequencies, the performance of single-threaded applications con-

tinued to improve. This was achieved using larger hardware designs with the addition of larger

caches, wider networks, more accurate but larger branch predictors, larger issue windows, etc.

Furthermore, with the help of better hardware engineering, the existing designs could be refined for

more effective uses of the transistors. Unfortunately, the number of tricks available to hardware

engineers is running out, and single-threaded performance improvements will eventually come to

an end.

Domain specific designs will continue to gain importance. With the slowing single-threaded

performance gains, yet relatively cheap transistors, more and more domains will invest in domain-

specific hardware. Recently, machine learning had a significant amount of success building custom

hardware [CDS

+
14, JYP

+
17]. Building custom hardware could become the most economic way of

improving the performance and/or reducing the energy of different domains’ computing needs.

Newer hardware design tools are emerging. Given that hardware engineering is becoming

more widespread, the designs more varied, and performed by smaller teams, the productivity

deficit continues to be a major issue. To address this, higher level abstractions and design tools are

being introduced. For example, new hardware generation frameworks such as Chisel [BVR

+
12],

Genesis2 [SAW

+
10], and PyMTL [LZB14] allow higher level software languages to be used for
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hardware design. Cycle-level simulators such as ZSim [SK13] and Sniper [CHE11] make use of

dynamic binary translation technology to enable very fast simulations as long as the host and guest

instruction set architectures (ISAs) match. Furthermore, approaches such as high-level synthesis

(HLS) automatically generate hardware from untimed algorithms [CLN

+
11]. The trend for newer

methodologies and tools will likely continue to gain importance.

Challenge: More agile hardware design methodologies are needed. While newer hardware

design methodologies have promise in increasing productivity to meet the demands of increased and

more diverse hardware engineering challenges, these approaches still have a number of practical

shortcomings. To name a few, the hardware generation frameworks often do not support fast

simulations in the high-level language but require simulating in lower level Verilog, fastest functional

and cycle-level simulation methodologies do not allow simulating guest ISAs that are different than

the host ISAs, and current HLS approaches still typically require heavy designer involvement in

generating the desired hardware. These challenges currently prohibit the new hardware design tools

to be truly agile. Agile hardware design methodology and tools combine flexibility, productivity,

and performance. Agile hardware design, just like agile software design, can be crucial for hardware

engineering teems to quickly explore and iterate many different design choices at different levels of

hardware design, and eventually refine their designs to hardware. But to achieve this, the practical

issues in newer hardware design tools need to be solved.

1.3 The Present and Future of Software Performance

The software design and performance will also continue to evolve into the future. The slowing

of Moore’s Law will also have repercussions on software performance.

Software will continue to get larger and more complex. Humans will continue to have new

and more complex problems, and writing software will continue to be the primary way to automate

solutions to those problems. Computing devices are currently the most ubiquitous and inexpensive

that they have ever been, and the availability of cheap and fast hardware creates an increasing

demand to write more, larger, and more complicated programs. The increasing diversity and

complexity of software itself is a challenge that is addressed with larger and more complex systems

software. I do not expect the pace of software development to slow down soon.
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Higher level languages will continue to be popular. As the demand for software grows, and

more people than ever develop software, higher level languages will continue their rise in popularity.

This is already being experienced with dynamic languages such as Python and JavaScript being used

more widely and for a wider number of domains. Dynamic languages use dynamic type systems

that can allow rapid prototyping, but also typically have other productivity-oriented features such as:

lightweight syntax, managed memory, rich standard libraries, support for dynamic code execution,

interactive execution environments, and advanced reflection capabilities.

Just-in-time (JIT) compilation will be more important. Higher level languages are usually

slower than lower level languages. This is especially true for dynamic languages. As more code

is being developed using higher level languages, and since single-threaded performance stops

delivering performance improvements, the performance of these languages will be an issue. Luckily,

JIT compilation has seen a lot of success and wider adoption over the last decade. One drawback of

JIT compilation is the engineering challenge to develop, maintain, and extend state-of-the-art JIT

compilation frameworks. However, there have been successful projects that use partial evaluation

and meta-tracing to repurpose a JIT compiler across multiple languages (see Chapter 2 for more

details). These approaches will become more important for achieving the productivity benefit of

higher level language while approaching the performance of lower level languages.

JIT compilation will have diminishing performance improvements. JIT compilation un-

locks significant performance benefits compared to simpler ways to execute higher level languages,

such as interpreters. A JIT can typically achieve 10⇥ or better performance compared to a fast

interpreter (see Chapter 6). Unfortunately, software-only improvements in JIT technology will

likely yield diminishing returns as low-hanging fruit opportunities are exploited.

Challenge: Novel JIT execution methods are needed. While higher level languages enable

the development of diverse and ambitious software, JIT compilation and improving single-threaded

performance have been the best tools in ensuring these languages maintained their performance

appeal. With both of these factors slowing down, there is a challenge in ensuring high-level

languages to be performance competitive with lower level languages. Hardware specialization for

the execution of high-level and dynamic languages can be a unique opportunity to address this

challenge.
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1.4 Thesis Overview

This thesis presents approaches to address the agile hardware design and novel JIT execution

challenges by co-optimizing meta-tracing JIT VMs and hardware design. This thesis has two thrusts

that tackle two opposite but related problems: (1) accelerating agile hardware simulations with

meta-tracing JIT VMs, and (2) building hardware accelerators for meta-tracing JIT VMs. The first

thrust can be seen as using JIT compilation technology to allow building better hardware design

tools, as seen in the new Part I arrow in Figure 1.1. The second thrust can be seen as building

hardware specialization not for new application domains, but for generally targeting high-level,

dynamic languages, as seen in the new Part II arrow in the figure.

Since meta-tracing is a key enabler for the contributions of this thesis, Chapter 2 presents

an extensive background on dynamic languages, JIT compilation, partial evaluation, and meta

tracing. The rest of the thesis is organized in two parts. Part I presents the first thrust and

demonstrates how meta-tracing JIT VMs can be used to accelerate functional-level (FL), cycle-level

(CL), and register-transfer level (RTL) hardware simulations. Chapter 3 presents Pydgin, where

we have built an agile instruction-set simulator; Chapter 4 presents PydginFF, where I introduce

fast-forward embedding and instrumentation to Pydgin to speed up sampling-based agile cycle-

level simulation; and Chapter 5 presents the Mamba techniques, which are simulation-aware JIT

and JIT-aware simulator techniques to speed up the new version of PyMTL, an agile hardware

generation and simulation framework [LZB14]. Part II of the thesis is dedicated to the second thrust

of building hardware accelerators for meta-tracing JIT VMs. Chapter 6 provides a comprehensive

cross-layer workload characterization of meta-tracing JIT VMs to identify hardware acceleration

opportunities, and Chapter 7 identifies object dereference locality and intermediate-representation-

level value locality in JIT-compiled codes of meta-tracing JIT VMs and software/hardware co-design

mechanisms to exploit these patterns. Finally, Chapter 8 concludes this thesis.

The primary contributions of this thesis are:

• I demonstrate meta-tracing JIT VMs can be used to speed up agile FL simulation of processors.

• I extend agile FL simulation using JIT fast-forward embedding and instrumentation for

sampling-based agile CL simulation of computer systems.

• I present JIT-aware hardware generation and simulation framework (HGSF) and HGSF-aware

JIT mechanisms for accelerating agile RTL hardware simulations using meta-tracing JIT VMs.
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• I present a novel methodology to study meta-tracing JIT VMs and allow experimenting with

hardware acceleration techniques.

• I perform an extensive cross-layer workload characterization of meta-tracing JIT VMs.

• I identify and quantize object dereference locality (ODL) and intermediate-representation-level

value locality (IVL) in JIT-compiled code in the context of meta-tracing JIT VMs.

• I propose a software/hardware co-design approach to exploit ODL and IVL.
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CHAPTER 2

BACKGROUND ON META-TRACING JIT VMS

This chapter provides background on dynamic languages, just-in-time (JIT) compilation, types

of JIT compilers, classical JIT optimization techniques, and partial evaluation. Furthermore, it

provides details on the meta-tracing JIT technology, which is an essential part of this thesis. The

first thrust of the thesis, accelerating hardware simulations with meta-tracing JIT VMs, exploits

the features provided by meta-tracing in novel ways to accellerate architectural simulations. The

second thrust, building hardware accelerators for meta-tracing JIT VMs, identifies shortcomings in

meta-tracing and proposes software/hardware co-design techniques to address those. The RPython

framework is the only production-grade implementation of a meta-tracing JIT framework, so this

chapter also provides details on this framework.

2.1 Dynamic Languages

Languages such as C, C++, Java, Rust, and Go are all statically typed: the types of variables are

statically declared by the programmer, or are statically inferred. Once determined, the type system

ensures that the types of variables cannot be modified. Static type systems can encourage disciplined

programming and enable sophisticated correctness checks of the program before any execution

takes place. Also very importantly, static typing generally makes it more efficient to execute a

program. In a program, operators may be overloaded across multiple data types (e.g., the + operator

can act as integer addition or string concatenation) and unrelated classes might have members with

identical lexical names, leading to ambiguity which semantics should be performed without static

typing. Static typing allows compilers to precisely determine which concrete version of overloaded

operators need to be used, and generate specialized code for this particular type. Static and strong

typing (i.e., no reinterpretive type casting), for example in Java, Go, and Rust, can enable further

compiler optimization opportunities (e.g., type-based alias analysis [CWZ90, DMM98]).

In contrast to statically typed languages, dynamically typed languages do not statically bind

types to variables. As the program executes, a variable might contain data of a certain type, and later

take on data of an unrelated type. While orthogonal to the typing system, many popular dynamically

typed languages, also known as dynamic languages, have other common features: strong typing

(not to be confused with static typing), lightweight syntax, managed memory, rich standard libraries,
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1 # Variables can contain objects of different types.
2 a = 1; a = "foo"
3

4 # Unrelated classes that happen to both have methods called bar.
5 class A:
6 def bar(self):
7 return 0
8 class B:
9 def bar(self):

10 return "bar"
11

12 # Lists can contain objects of unrelated types.
13 l = [ A(), B() ]
14 # Duck typing for unrelated types, prints "[0, 'bar']".
15 print [ x.bar() for x in l ]
16

17 # Reflection allows programmatically retrieving class object A using a string.
18 C = globals()["A"]
19 a = C()
20 # We can call the bar method again using reflection, prints 0.
21 print getattr( a, "bar" )()
22

23 # Reflection allows modifying the type A.
24 A.bar = lambda self : "new_value"
25

26 # The line from above, with objects constructed before we modified the type A,
27 # now prints "['new_value', 'bar']".
28 print [ x.bar() for x in l ]

Figure 2.1: Dynamic Language Features – Examples of features that dynamic languages typically provide.

support for dynamic code execution (e.g., the eval keyword in Python and JavaScript), interactive

execution environments, and advanced reflection capabilities. The categorization of dynamic and

static languages is not always clear cut, and languages are typically on a spectrum. For example,

Java, a static language, has many dynamic features: it makes heavy use of dynamic method dispatch,

uses managed memory, type inference, dynamic code execution, and reflection. Unfortunately,

many of these powerful dynamic features mean that ahead-of-time- (AOT-) compilation will not

result in meaningful performance improvements. An AOT compiler, without a priori knowledge of

the types of variables, cannot generate efficient, type-specialized code. Because of this, dynamic

languages typically use interpreters for execution.

Figure 2.1 shows some of the dynamic features that are typically present in dynamic languages

through an example Python snippet. Line 2 shows that a variable a is allowed to contain values of

different types throughout execution; line 13 shows that builtin types such as lists allow containing
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Year: 2018 2018 2018 2018 2014 2013 2013

Ref: [Cas18] [TIO18] [Car18] [O’G18] [Tre15] [Lan13] [tlp13]

IEEE Trendy Skills Trans. Lang.
Rank Spectrum TIOBE PYPL RedMonk (best paying jobs) LangPop Pop. Idx.

1 Python Java Python JavaScript Python C C

2 C++ C Java Java Java Java Java

3 Java Python JavaScript Python C++ PHP Objective-C

4 C C++ C# PHP C JavaScript C++

5 C# Visual Basic PHP C# JavaScript C++ Visual Basic

6 PHP C# C/C++ C++ HTML5 Python PHP
7 R JavaScript R CSS XML Shell Python
8 JavaScript PHP Objective-C Ruby PHP Ruby C#

9 Go SQL Swift C C# Objective-C Perl
10 Assembly Objective-C Matlab Objective-C HTML C# Ruby

Table 2.1: Top Ten Most Popular Programming Languages – Adapted from [RO14] and updated. Using most

up-to-date versions of the rankings as indicated by year. Languages in bold are dynamic languages.

objects of unrelated types; line 14 demonstrates duck typing, where the bar methods of unrelated

objects would be called without the need to use inheritance; lines 18–21 show the power of

reflection in programmatically accessing variables and types, constructing, and calling them; line 24

demonstrates monkey patching, where a different method bar gets attached to class A; and line 28

shows objects of type A that were instantiated before A has been modified are affected by the type

modification.

Even though dynamic typing gives up static error checking through type checking, the powerful

features of these languages while maintaining simplicity can help productivity. Productivity is

a notoriously difficult and subjective metric to measure, and there have been a few empirical

studies that suggest programmers prefer static typing in the interfaces of programs but dynamic

in smaller, frequently changing code [SF14, HKR

+
14, DSF09]. Furthermore, dynamic languages

have been increasing in popularity. Table 2.1 shows the top ten most popular languages across

different rankings that compare the popularity of keywords in search engines, social media sites,

and public code repositories such as GitHub. Even though the exact ordering is different, every

ranking indicates that three to five of ten most popular languages are dynamic languages with

Python, JavaScript, PHP, Ruby, and R consistently selected as the most popular dynamic languages.
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2.2 Just-in-Time Compilation

Just-in-time- (JIT-) compilation (often also referred to as simply JIT or adaptive optimization),

is an optimization technique with a long history [AFG

+
05, Ayc03]. As in Arnold et al. [AFG

+
05],

it is useful to employ Rau’s categorization of program representations [Rau78] to crisply define

what JIT compilation is:

• High-level representation (HLR): high-level source code, e.g., C++, Java, or Python. (For

example, Figure 2.2)

• Directly interpretable representation (DIR): an intermediate-level representation suitable for

executing on an interpreter, e.g., Java bytecode or Python bytecode. (For example, Figure 2.3)

• Directly executable representation (DER): binary code assembled for a particular ISA, e.g.,

x86 or RISC-V binary.

An interpreter is a piece of software that directly executes DIR, whereas a JIT compiler is a piece of

software that translates DIR to DER. Some of the earliest JIT compilers had the primariy goal of

reducing the memory usage. As the available memory of early computers was exteremely limited,

and because DIR tended to be a much more compact representation than DER, there were two

related techniques proposed to reduce the memory usage: mixed code [DP73, Daw73], where

frequently executed parts of the code are statically compiled to DER and others were interpreted,

and throw-away compiling [Bro76], where parts of a program are dynamically compiled on an

as-needed basis and thrown away if memory is exhausted.

While earlier efforts on JITs were primarily driven as a space-saving measure for static languages,

the poor performance of the interpreter for Smalltalk, an early dynamic language, made clear that

the performance of interpreter-only execution was an issue. An important early work on JITs

for dynamic languages was implemented in the VM for Smalltalk-80 [DS84]. Then, the Self

project introduced many important advanced JIT techniques still used today: polymorphic inline

caches [HCU91], on-stack replacement [HU94b], dynamic deoptimization [HCU92], selective

compilation with multiple tiers of compilers [DA99], type prediction and splitting [CU91], and

profile-directed inlining integrated with adaptive recompilation [HCU91].

Then, with the introduction of Java, JIT-optimized VMs became truly mainstream. The early

versions of Java VMs did not have JIT compilers, resulting in very poor performance compared to
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1 def max(a, b):
2 if a > b:
3 return a
4 else:
5 return b

Figure 2.2: Example Python Code (HLR)

1 # Line 2:
2 0 LOAD_FAST 0 (a)
3 3 LOAD_FAST 1 (b)
4 6 COMPARE_OP 4 (>)
5 9 POP_JUMP_IF_FALSE 16
6 # Line 3:
7 12 LOAD_FAST 0 (a)
8 15 RETURN_VALUE
9 # Line 5:

10 16 LOAD_FAST 1 (b)
11 19 RETURN_VALUE
12 20 LOAD_CONST 0 (None)
13 23 RETURN_VALUE

Figure 2.3: Python Bytecode (DIR) – Python byte-

code uses a stack machine and this code corresponds

to Figure 2.2

1 w1_type = w1.type
2 w2_type = w2.type
3 guard(w1_type == IntObj)
4 guard(w2_type == IntObj)
5 i1 = w1.intval
6 i2 = w2.intval
7 res = i1 > i2
8 if res == True:
9 retval = w1

10 else:
11 retval = w2

Figure 2.4: JIT Pseudo-IR – The DER before as-

sembly, corresponding to Figure 2.3.

1 class Frame:
2 def __init__(self, size):
3 self.stack = [None] * size
4 self.depth = 0
5 def pushval(self, val):
6 self.depth += 1
7 self.stack[self.depth] = val
8 def popval(self):
9 self.depth -= 1

10 return self.stack[self.depth + 1]
11

12 def interpret(bcs, frame):
13 while True:
14 bc = bcs[i]
15 if bc == LOAD_FAST:
16 idx = bcs[i + 1]
17 frame.pushval(frame.stack[idx])
18 i += 3
19 elif bc == COMPARE_OP:
20 cmpop = bcs[i + 1]
21 w2 = frame.popval()
22 w1 = frame.popval()
23 if cmpop == 0: # lt
24 ...
25 elif cmpop == 4: # gt
26 if w1.type == IntObj and \
27 w2.type == IntObj:
28 i1 = w1.intval
29 i2 = w2.intval
30 frame.pushval(i1 > i2)
31 elif w1.type == FloatObj and \
32 w2.type == FloatObj:
33 ...
34 elif w1.type == UserInstanceObj:
35 frame.pushval(w1.call('__gt__', w2))
36 elif ... # Other types.
37 elif ... # Other cmpops.
38 i += 3
39 elif ... # Other bytecodes.

Figure 2.5: Simplified Python Interpreter

C and C++. Because Java is mostly a static language, AOT-compilation is possible (e.g., gcj [gcj18],

Java 9 [Koz18], and Android ART [and]). However, some of the dynamic features of Java (e.g.,

dynamic class loading) cannot be AOT-compiled, so those are either not allowed or fall back to

being executed on the interpreter and JIT. Since efficient AOT-compilation of Java is possible, the

main purpose of using a JIT VM for Java is portability across multiple targets and security.
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Over the last decade, JIT VMs have increased their mainstream adoption, but this time in the

context of dynamic languages. Because types are dynamically determined, the best AOT compila-

tion can achieve is to get rid of the DIR dispatch overhead, and this would only be marginally faster

than execution on an interpreter. The AOT-compiled code would have to include the type dispatch

logic and semantics of all types. Furthermore, dynamic languages typically allow programmatic

creation and execution of new programs (e.g., Python and JavaScripts’s eval()). Dynamically

created programs, by definition, cannot be AOT compiled. Because of this, as opposed to Java JIT’s

goal of primarily providing portability, JITs for dynamic languages primarily aim to improve the per-

formance. JIT VMs for dynamic languages are ubiquitous these days especially with the JavaScript

engines of browsers (e.g., Google (Chrome) V8 [v8], Mozilla (Firefox) SpiderMonkey [spi], Webkit

(Safari) JavaScriptCore [jav], and Microsoft (Edge) Chakra [cha]), but also for servers (e.g., HHVM

for PHP [Ott18]), scientific computing (e.g., Julia [jul]), and general purpose programming (e.g.,

PyPy for Python [pypa], TruffleRuby for Ruby [trub], and LuaJIT for Lua [lua]).

Executing a dynamic language program on an interpreter has a number of overheads compared

to running the same program in C. We will look at how JIT compilation can address some of these

overheads:

• DIR dispatch overhead: An interpreter has to get the next available DIR instruction (e.g.,

bytecode), decode it, and dispatch to the interpreter code that implements the semantics of

this instruction. This is shown in lines 15, 19, and 39 in Figure 2.5.

• Type dispatch overhead: In a dynamic language, since types are dynamically determined, the

semantics of operations changes depending on the type. Lines 26, 31, and 34 in Figure 2.5

show an example of these overheads.

• Semantic overhead: The language may provide more semantically rich operators and data

types compared to a lower level language. For example, integers in Python are semantically

infinite bits wide. Even if a programmer does not need infinite-width integers, machine-width

integers might not be available in the language or more cumbersome to use.

There are a number of design decisions regarding the construction of JIT VMs for dynamic

languages. Figure 2.6 shows a typical architecture. The HLR gets compiled down to DIR (arrow 1),

and DIR executes on an interpreter (arrow 2). The interpreter serves three purposes: it can execute

DIR with low latency (but low peak performance as well), identify hot (frequently executed) parts
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Figure 2.6: Typical JIT VM Architecture – Arrow 1:

high-level representation (HLR) compiles to directly in-

terpretable representation (DIR), 2: the DIR is interpreted

using an interpreter, 3: hot DIR methods can be compiled

using a JIT compiler, 4: for good performance, runtime

type information also needs to be used by the compiler, 5:

the compiler generates directly executable representation

(DER), and 6: if the type assumptions in the DER are

incorrect, the execution falls back to the interpreter using

deoptimization.

Figure 2.7: Meta-JIT VM Architecture – PE = partial

evaluator, MI = meta-interpreter. Arrows 3 and 4: the

interpreter itself is used to generate the DER along with

runtime type information. The other arrows are the same

as Figure 2.6

of the DIR, and gather runtime information such as types and constant values. Once a part of

the DIR is determined to be hot enough, the (JIT) compiler compiles it to DER (arrows 3 and 5).

Importantly, the compiler also uses the runtime information gathered by the interpreter (arrow 4).

Without this information, the best a compiler can do is to get rid of the DIR dispatch overhead.

Using these runtime type observations, the compiler can generate type-specialized DER. As there

are no semantic guarantees of the type information to be stable, the DER generated also includes

type checks. In case any of these type checks fail, the DER would not be able to handle the program

semantics that it was not specialized for, and it deoptimizes to the interpreter (arrow 6). The

interpreter can then continue execution, and compile again with the additional observed type.

2.2.1 JIT Design Decisions

Multi-Tier Compilation – While Figure 2.6 shows an architecture with an interpreter and a

compiler, many of the state-of-the-art JIT VMs for dynamic languages employ multiple levels

of compilation. For example, JavaScriptCore used in Safari uses an interpreter, a baseline non-

optimizing compiler that does not use the type information to specialize, a second-tier optimizing
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compiler that uses the runtime types and values observed by the interpreter and baseline compiler,

and finally a third-tier optimizing compiler that uses more aggressive and expensive compilation

passes. If the DER produced by any of the optimizing compilers encounters a type that it is not

optimized for, it falls back to the interpreter or DER produced by the baseline compiler [jav]. Other

JavaScript VMs, such as V8, use similar multi-tier architectures. The chosen VM architecture

aims to balance latency and peak performance. More aggressive compilation passes produce better

code but require additional compilation time. As the VM does not have a priori information about

how often a part of a DIR will be executed, it heuristically uses consecutively more aggressive

compilation tiers in an effort to balance time spent in compilation and the performance of DER.

One of the drawbacks of having an interpreter and multiple tiers of compilers is the engineering

challenge of developing and maintaining two separate and complicated pieces of code.

Granularity of Compilation – Another design decision is the granularity of compilation for

the DERs. The traditional approach is to compile DERs that correspond to HLR methods, and

this approach is called a “method JIT”. Besides methods, contemporary method JITs also have

special support to compile regions smaller than methods such as loops, and larger than methods

using method inlining and region-based compilation [Ott18, HHR95]. Method JITs maintain the

control-flow graph in the DIR in the code that they compile. An alternative approach to method JITs

is a tracing JIT, which captures and compiles a linear trace through the DIR [GES

+
09]. Tracing

JITs compile a linear DER, which contains guards for control-flow diversions. In case the control

flow takes a different path than the linear DER, these guards would fail, and bridges, which are

additional linear traces that attach to these failing guards may be compiled. One benefit of tracing

JITs over method JITs is that certain compiler optimizations may be less expensive due to cheaper

compiler optimization passes that do not have to deal with control flow diversions.

2.2.2 Classic JIT Optimizations and Techniques

There has been a number of JIT optimizations developed over the years tackling the dynamic

language execution overheads. Below is a list of some of the most well known ones:

DIR Dispatch Overhead Removal – This is the first and easiest overhead to tackle. This is also

the only optimization that AOT compilers for dynamic languages can implement. This optimization

can be implemented by inlining the semantics of the DIR instructions.
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1 w1_type = w1.type
2 w2_type = w2.type
3 if w1_type == IntObj:
4 guard(w2_type == IntObj)
5 i1 = w1.intval
6 i2 = w2.intval
7 res = i1 > i2
8 else:
9 if w1_type == UserInstanceObj1:

10 res = call(UserInstanceObj1_gt_fun, w1, w2)
11 elif w1_type == UserInstanceObj2:
12 res = call(UserInstanceObj2_gt_fun, w1, w2)
13 else:
14 gt_fun = call(get_fun, w1, "__gt__")
15 res = call(gt_fun, w1, w2)
16 if res == True:
17 retval = w1
18 else:
19 retval = w2

Figure 2.8: JIT Pseudo-IR with a Polymorphic Inline Cache (PIC) – Corresponds to the pseudo-IR from Figure 2.4,

but after two additional user types have been encountered and optimized using a PIC.

Type Feedback – Even though dynamic languages allow different types at each DIR instruction,

in practice, programmers only use a few types. Optimizing away the type dispatch overhead uses

this observation. The first step towards optimizing this overhead is for the interpreter (or sometimes

first-tier DER as in JavaScriptCore [jav]) to collect type information and feed this to the optimizing

compiler. The optimizing compiler would use this information to generate specialized DER for the

observed types. It will also include guards for checking if the types of variables match the types the

DER was optimized for. This technique was first used in Self [HU94a].

Inline Caching – One of the optimizations that can be done by the JIT compiler using type

feedback is inline caching. For example, in dynamic-language method call such as foo.bar(), the

type of the receiver object (foo) often cannot be deduced statically. However, in practice, very few

types might be observed at the call site. Normally, a type dispatch needs to be performed to find the

concrete method that corresponds to the type of the receiver object. This optimization inlines into

the DER the concrete method along with a type check to ensure the receiver object is indeed what

it was expected. Figure 2.4 shows an example of what inline caching might look like in the DER.

This example shows that the type for the max function arguments are observed to be IntObj. Using

this observation, the semantics of the greater-than function (__gt__) for integer types have been

inlined in the trace. Type checking is done using guards, allowing falling back to the interpreter in
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case different types are observed when executing the DER. Note that even though type feedback is

often used to determine which types to inline cache, inline caching can also be used without type

feedback but with type heuristics (using common paradigms in the language). This technique was

first used in the Smalltalk system [DS84].

Polymorphic Inline Caches (PIC) – An extension of inline caching is polymorphic inline

caches. While the vast majority of the call sites indeed have a single receiver object type (monomor-

phic), deoptimizing to the interpreter every time the inline cache is different can be expensive. This

approach grows the inline caches for all the common receiver object types observed at each call site.

Figure 2.8 shows an example PIC in the DER that corresponds to the earlier DER in Figure 2.4,

after additional user-defined types have been encountered and DER recompiled. This particular

example uses a polymorphic inline cache both for the builtin IntObj type as well as two different

user-defined types. In case the argument is of a fourth type, this code will manually retrieve the

__gt__ function for the type, which can be expensive. This technique was first implemented in

Self [HCU91].

On-Stack Replacement (OSR) – One issue of having multiple representations of the program,

the DIR and DERs produced through multiple levels of compilation is that switching from one

representation to another is difficult because each representation uses a different stack layout. This

is especially a problem if the current DER receives a different type that what it was specialized for,

and needs to deoptimize. It cannot simply return from the currently executing DER because there is

intermediate state in the current stack frame that needs to be communicated to the interpreter so that

it can continue execution from that point. Similarly, JIT compilation might need take place while

the interpreter is in the middle of executing a method, especially important for loops. This technique

retains enough meta-information and stack layouts of each representation to reproduce the stack

layout for the target representation. This technique, too, was first demonstrated in Self [HU94b].

Semantic Overhead Optimizations – In addition to type specialization techniques, there are

also a number of techniques that target the semantic overheads of dynamic languages. One example

is the infinite-bitwidth integer types used in Python. Even though semantically, integers need to

behave as if they have infinite bits, in practice, most values would fit in machine-bitwidth-sized

integers. To efficiently handle this, the VM would actually use a machine-bitwidth-sized integer

to represent the dynamic language integer, but check for overflows for any operation that might

cause an overflow. In case of an overflow, it changes the representation of the integer to use multiple
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1 def f(n, x):
2 if n == 0:
3 return 1
4 elif n % 2 == 1:
5 return x * f(n - 1, x)
6 else:
7 return f(n / 2, x) ** 2
8

9 def f_13(x):
10 return x * ((x * (x ** 2)) ** 2) ** 2

Figure 2.9: Partial Evaluation Example – The partial evaluation of f with n == 13 yields f_13, and it has identical

semantics to f as long as n == 13. Example adapted from [JG02].

words. Similarly, in Python, lists can contain any data type. However, in practice, it is quite common

for programmers to put objects of the same type, such as a list of integers. The VM can then

opportunistically use an integer array to hold the data. Besides saving memory, this also reduces

the number of type checks for reads. For correctness, the VM checks for insertions into the list

and changes the list to a generic object array if an object of a different type is being inserted. Note

that these optimizations, unlike the optimizations targeting DIR dispatch and type dispatch, can be

implemented for interpreter-only VMs.

2.3 Partial Evaluation

Partial evaluation is the specialization of a program for certain inputs. For example, as Figure 2.9

shows, it is possible to specialize a piece of code for a subset of its inputs. If we use a partial

evaluator, pe, which is a piece of code that partially evaluates a program for certain inputs, we can

specialize f like following: pe(f,13)! f_13. f_13 is a partially evaluated version of f where n

== 13. The partially evaluated version can be significantly faster than the generic version, with the

restriction that it only gives the correct answer if n == 13.

Partial evaluation can also be applied to interpreters of dynamic languages. This allows

generating specialized code out of an interpreter. This is known as the first Futamura projec-

tion [Fut71, JG02]. There are a total of three Futamura projections:

1. Partial evaluation of an interpreter with a subset of the interpreter inputs (application source

code and subset of inputs) yields specialized programs. For an interpreter that can evaluate
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interpreter(in1, in2)! out; partial evaluation can be used to yield pe(interpreter, in1)! sp,

where sp(in2)! out.

2. Partial evaluation can be applied to other programs, including partial evaluators. Partial

evaluation of a partial evaluator that has an interpreter as its input would generate a specialized

partial evaluator for the language the interpreter is written for. A specialized partial evaluator

is a compiler, as it takes in the application source code and generates a specialized program.

pe(pe, interpreter)! compiler, where compiler(in1)! sp.

3. Taking this further, we can also generate a compiler generator by partially evaluating a partial

evaluator with a partial evaluator as its input. The generated compiler generator will be able to

generate compilers given interpreter source code as its input. pe(pe, pe)! compgen, where

compgen(interpreter)! compiler.

The first Futamura projection is a very attractive observation, as it can potentially allow building

JIT compilers from dynamic language interpreters automatically. It can eliminate the engineering

problem of developing and maintaining an interpreter and a JIT compiler for a particular DIR.

Furthermore, engineering effort can be concentrated on developing an aggressive partial evaluator

that can be used to automatically build JIT compilers for multiple dynamic languages out of

interpreters, which tend to require less engineering effort. While theoretically, partial evaluation can

be applied to any program including interpreters, there are a number of practical challenges [JG02].

One problem is ensuring the termination of the partial evaluation algorithm. Partial evaluation might

not terminate with certain patterns of recursive calls. To ensure termination, the algorithm would

need to determine the bounds of partial evaluation, and needs to use the generic (unspecialized)

version of the code. Secondly, determining which inputs are good candidates for specialization (e.g.,

specializing in1 vs. in2 vs. both in1 and in2 for f) is hard. The partial evaluator needs to avoid

overspecialization (and the specialized code might not be used enough times to amortize the time

it takes to specialize) and underspecialization (and the specialized code might not give sufficient

speedups). Because of these challenges, fully automatic partial evaluators are not very practical.

The Truffle project was the first successful implementation of partial evaluation for automatically

generating JIT VMs [WWH

+
17, WWW

+
13, WWS

+
12]. The Truffle framework allows writing

abstract-syntax-tree (AST) interpreters for dynamic languages in Java. Each different AST node

is represented using a Java class with the corresponding semantics of executing the AST node.
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Additionally, these Java classes also store the observations about types or values that the interpreter

writer deems to be usually constant. These observations are marked with a special Truffle annotation.

Once the DIR methods or loops are determined to be hot enough, the Truffle framework performs

partial evaluation of the interpreter-level AST node objects that correspond to the DIR method.

The structure of the AST (i.e., the parent and children AST nodes) and any of the type and data

observations that are specially marked would be used as part of partial evaluation (equivalent to in1

in the example above). Similarly, to ensure termination of partial evaluation, the partial evaluation

boundaries are also explicitly marked in the interpreter. This approach is used to automatically

generate program specialization simply out of interpreters, albeit with a heavy use of partial-

evaluation-related annotations. There are JIT VMs built with Truffle for many languages including

JavaScript [WWS

+
12], Ruby [Sea15], Python [WB13], R [SWHJ16], and LLVM IR (for C/C++

and x86 assembly) [RGM16], many of which are either the fastest or competitive with purpose-built

JIT VMs for the language.

2.4 Meta-Tracing

A related approach to partial evaluation is meta tracing. Whereas a tracing JIT records and

compiles a trace of the DIR as it is interpreted, meta-tracing records and compiles a trace of

the interpreter as it executes the DIR. Meta-tracing can also be seen as a limited form of partial

evaluation: while partial evaluation creates specialized code given the interpreter code and a subset

of generally constant inputs (e.g., types), meta-tracing creates specialized code given a subset of the

interpreter code (only the traced paths) and a subset of generally constant inputs. Similar to partial

evaluation, meta tracing can be used to build a dynamic language JIT VM using the interpreter for

the language. Because partial evaluation and meta-tracing both allow automatically building JIT

VMs using the interpreter, they are sometimes collectively referred to as meta-JIT frameworks. The

RPython framework is the only successful implementation of meta-tracing, and this framework

serves as the foundation for the work in this thesis.

The RPython framework (RF) is a VM-generation framework that can also automatically

generate a tracing-JIT compiler from the interpreter. Figure 2.10 shows the components of the

framework and how these components interact with each other. Importantly, there is a translation-

time and execution-time split, where the translation-time describes the events that take place
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Figure 2.10: The RPython Framework – Darker blocks are needed to support meta-tracing JIT compilation.

once when building the VM, and execution-time describes the events that take place when the

generated VM is used. Because the RPython name is used for the framework, language, runtime,

and translation toolchain, the following discussion will refer to these components using their

abbreviations for clarity even though these abbreviations are not widely used. At the simplest

level, the RPython framework allows writing interpreters for a target dynamic language DIR (e.g.,

Python Bytecode) using the RPython language (RL). Arrow 1 in Figure 2.10 shows the HLR to

DIR compilation. RL is a proper, typeable subset of Python. The RPython runtime (RR) itself is

also written mostly in RL. Because RL is a subset of Python, the interpreter can be run on top of a

Python VM, especially useful for debugging (arrow 2). Running the interpreter on a Python VM

can make use of RR libraries (arrow 3), but garbage collection etc. will still be performed by the

underlying Python VM. Running the interpreter on top of another VM is unsurprisingly very slow,

but to get around that, RF includes the RPython translation toolchain (RTT). RTT can perform type

inference over the entire interpreter and runtime (arrow 4). The typed graph is then converted to C

and then compiled to binary using a C compiler to build the VM (arrows 5 and 6).

Once the VM is built, at execution time, the target application DIR can directly be run on

the translated interpreter (arrow 7). The performance of this interpreter-only VM is similar to

interpreter-only VMs written in lower level languages such as C. But the real benefit of RF is
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the ability to automatically generate a tracing-JIT compiler using the interpreter written in RL.

In a typical tracing-JIT compiler, a trace of execution through the application bytecode is built

and optimized. However, RF actually generates a meta-tracing-JIT compiler, where the trace is

instead built by tracing through the interpreter as the interpreter executes the application bytecode.

To achieve this, the runtime includes a meta-interpreter, an optimizer, and a backend to generate

machine code, all written in RL. At translation time, in addition to generating C code, RF can use

the typed flowgraphs to create jitcodes, which are memory-dense and statically typed representation

of the interpreter semantics (arrow 8).

During execution time, as the application bytecode executes on the interpreter, frequently

executed paths in the application are discovered. Once these paths are hot enough, the VM switches

to using the meta-interpreter. The meta-interpreter executes the jitcodes, which in turn interprets

the application bytecodes (arrow 9). As the meta-interpreter executes, it records a trace of the

operations it performs (arrow 10). The generated trace is linear, but it includes guards that check for

run-time conditions that would cause the execution to diverge from the recorded trace. Interpreters

typically handle different run-time conditions in separate control flow paths (e.g., depending on

the run-time type of a variable, perform the integer or string addition). So, generating the linear

trace through the interpreter naturally contains the type-specialized paths. Using the guards and

observed values of run-time variables, the optimizer can remove a large part of the trace, and then

the DER of the optimized trace is generated (arrows 11 and 12). Once this occurs, the execution can

directly happen on the JIT-compiled binary (arrow 13). Garbage collection and some parts of the

VM libraries are not amenable to JIT-compilation, so there might be callbacks to these components

from the JIT-compiled code (arrow 15). Finally, if any of the guards in the JIT-compiled code fails,

the execution will fall back to the interpreter, where later another trace for the failing path might be

traced and compiled if it is hot enough (arrow 14).

2.4.1 RPython Usage

To build high-performance meta-tracing JIT VMs using the RPython framework, there are a

number of patterns and APIs that interpreters need to make use of. Below lists some of these

important ones:

Translation Considerations – RL is a type-able restricted subset of the Python language. To

determine the types, global type inference is performed over the interpreter and the RPython runtime.
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Because of this, RL code cannot use dynamic typing (e.g., Line 2 in Figure 2.1 is not allowed).

As a corollary duck typing (e.g., Line 15 in Figure 2.1) is also not allowed. However, (multiple)

inheritance and polymorphism features of Python are retained in RL. Often, type inheritance is not

sufficient to express VM writer’s intent especially when it comes to type refinement. Unfortunately,

the version 2 of Python that RL is based on does not support explicit type specification. To get

around this, interpreter writers can use assert isinstance(NewType, a), and RTT would treat

this as downcasting. Similarly, lack of explicit type declaration can be a drawback in function

arguments. Function overloading is allowed, but type inheritance tries to find a common ancestor if

there are multiple calls with different types. Occasionally, there might not be a suitable common

ancestor available. For those cases, interpreters can use the @specialize.argtype decorator, and

this informs RTT to create multiple copies of the function with different types.

Basic JIT Hints – To take advantage of the meta-tracing JIT, at a minimum a JitDriver needs

to be created, as shown in line 1 in Figure 2.11. The meta-tracing JIT traces the interpreter as

it executes an iteration of an application-level loop. Because an application-level loop typically

corresponds to multiple iterations of the interpreter-level loop, the framework needs to know which

variables represent the location of the currently executing DIR instruction and when application-

level loops jump back to the beginning. These are specified using green and red variables. The

green variables represent the variables that indicate the DIR and the location into the DIR (e.g., PC,

bytecode index, and the bytecodes themselves), and the red variables are the remaining variables.

The hash of green variables serves as a unique identifier of DIR location, so this hash is used to find

if the VM has already built JIT-compiled code at this particular location. The JitDriver object is

used to mark the beginning of the interpreter-level loop using the jit_merge_point call (line 19)

and application-level loop using the can_enter_jit call (line 47). With these hints alone, the

meta-tracing JIT is able to trace through the application, but unfortunately this does not eliminate

most of the overheads, as can be seen in the unoptimized pseudo-IR of the trace in Figure 2.12.

Also note that the RPython framework supports multiple JitDrivers for different interpreter loops,

useful for complex interpreter features implemented using loops, e.g., regular expressions, or for

building mixed-language JIT VMs [BBT13].

Constant Promotion – Certain interpreter-level variables are constants at a particular point in

the trace. A good example of this the DIR location (e.g., the PC). The constant promotion hint tells

the optimizer that a particular variable can be treated as a constant at that particular point in the
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1 jd = JitDriver(greens=['i', 'bcs'], reds=['frame'])
2 class Frame:
3 _virtualizable_ = ['stack[*]', 'depth', ...]
4 def __init__(self, size):
5 self.stack = [None] * size
6 self.depth = 0
7 def pushval(self, val):
8 self.depth += 1
9 self.stack[self.depth] = val

10 def popval(self):
11 self.depth -= 1
12 return self.stack[self.depth + 1]
13

14 def interpret(bcs, frame):
15 @elidable_promote
16 def get_bc(bcs, i):
17 return bcs[i]
18 while True:
19 jd.jit_merge_point(i=i, bcs=bcs, frame=frame)
20 bc = get_bc(bcs, i)
21 if bc == LOAD_FAST:
22 idx = get_bc(bcs, i + 1)
23 frame.pushval(frame.stack[idx])
24 i += 3
25 elif bc == COMPARE_OP:
26 cmpop = get_bc(bcs, i + 1)
27 w2 = frame.popval()
28 w1 = frame.popval()
29 if cmpop == 0: # lt
30 ...
31 elif cmpop == 4: # gt
32 if w1.type == IntObj and \
33 w2.type == IntObj:
34 i1 = w1.intval
35 i2 = w2.intval
36 frame.pushval(i1 > i2)
37 elif w1.type == FloatObj and \
38 w2.type == FloatObj:
39 ...
40 elif w1.type == UserInstanceObj:
41 frame.pushval(w1.call('__gt__', w2))
42 elif ... # Other types.
43 elif ... # Other cmpops.
44 i += 3
45 elif bc == JUMP_ABSOLUTE:
46 ...
47 jd.can_enter_jit(i=i, bcs=bcs, frame=frame)
48 elif ... # Other bytecodes.

Figure 2.11: Simplified RPython Interpreter – Corresponds to the

interpreter in Figure 2.5 but with meta-tracing hints.

1 i = 9
2 bc = bcs[i]
3 guard(bc != LOAD_FAST)
4 guard(bc == COMPARE_OP)
5 cmpop = bcs[i + 1]
6 stack = frame.stack
7 depth = frame.depth
8 w2 = stack[depth]
9 depth = depth - 1

10 frame.depth = depth
11 depth = frame.depth
12 w1 = stack[depth]
13 depth = depth - 1
14 frame.depth = depth
15 w1_type = w1.type
16 guard(w1_type == IntObj)
17 w2_type = w2.type
18 guard(w1_type == IntObj)
19 i1 = w1.intval
20 i2 = w2.intval
21 res = i1 > i2
22 stack = frame.stack
23 depth = frame.depth
24 depth = depth + 1
25 stack[depth] = res
26 frame.depth = depth

Figure 2.12: Unoptimized Meta-Trace

1 w1_type = w1.type
2 w2_type = w2.type
3 guard(w1_type == IntObj)
4 guard(w1_type == IntObj)
5 i1 = w1.intval
6 i2 = w2.intval
7 res = i1 > i2
8 guard(res == True)
9 retval = w1

Figure 2.13: Optimized Meta-Trace
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1 a_type = a.type
2 b_type = b.type
3 guard(a_type == IntObj)
4 guard(b_type == IntObj)
5 i1 = a.intval
6 i2 = b.intval
7 i3 = i1 + i2
8 temp = new(IntObj)
9 temp.intval = i3

10 i4 = temp.intval
11 i5 = i4 / 2
12 c = new(IntObj)
13 c.intval = i5

Figure 2.14: Meta-Trace for c=(a+b)/2 Without Es-
cape Analysis

1 a_type = a.type
2 b_type = b.type
3 guard(a_type == IntObj)
4 guard(b_type == IntObj)
5 i1 = a.intval
6 i2 = b.intval
7 i3 = i1 + i2
8 i5 = i3 / 2
9 c = new(IntObj)

10 c.intval = i5

Figure 2.15: Meta-Trace for c=(a+b)/2 With Escape
Analysis

trace. Besides green variables, the careful use of this hint for unlikely-to-change variables (e.g., the

shapes of application-level objects) can unlock further optimization opportunities. The variable that

is constant promoted will have a guard in the trace to check if the run-time value is indeed equal

to what was recorded in the trace, and this value would be constant propagated for the rest of the

trace. The constant promotion hint is analogous to the constant inputs in a partial evaluation (as in n

in Figure 2.9), and to the PEFinal keyword used in the Truffle framework. RPython also allows

specifying immutable members of classes, analogous to the const members in C++. Immutable

members also act similar to constant promotion, as the compiler can assume these values do not

change once they are set.

Elidable Functions – Another powerful RPython JIT hint is the @elidable decorator. The

interpreter often uses functions that return the same value given the same inputs. These are similar

to pure functions, however, unlike pure functions, elidable functions can be used to optimize

functions that have side effects but are idempotent. This can be useful for memoizing an expensive,

but idempotent operation. As long as the arguments to the elidable function are constant (or

constant promoted), the optimizer eliminates the call and replace it with the constant return value.

This optimizer can further constant propagate the return value. Line 15 in Figure 2.11 shows the

@elidable_promote decorator, which is a combined constant promotion and elidable function

hint. This hint is used to eliminate the actual bytecode token given the bytecode list and an index.

As the optimized trace in Figure 2.13 shows, this optimizes away not only the bytecode lookup

logic, but also the bytecode dispatch and comparison operator dispatch logic.
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Escape Analysis – One side effect of using the interpreter as the basis of JIT compilation is that

the interpreter itself might introduce additional overheads. For example, a Python integer object is

implemented using an interpreter object that has fields for the type and the raw integer value (type

and intval in Figure 2.11 respectively). Furthermore, Python integers have immutable semantics,

meaning any operation performed over them creates a new object instead of modify the existing

one. Figure 2.14 shows a meta-trace that is generated from performing c = (a + b) / 2. Notice

that lines 8–10 create a temporary integer object, store the temporary raw value to this object, and

read this field back for further computation. This is because the interpreter had to create an IntObj

object and perform boxing and unboxing operations. However, in this particular case, the temporary

object is never read, and it does not escape the DER (be accessible to code outside the DER). Escape

analysis in RPython identifies all of these unnecessary new object creations, boxing and unboxing

operations, and removes them [BCF

+
11a]. After the escape analysis optimization, the code can

be optimized like in Figure 2.15. If this trace is part of a larger trace where the escape analysis

can determine a, b, and c are also used only as temporaries, the allocations and boxing operations

can be optimized away for those objects too. The Truffle framework also performs a similar partial

escape analysis to remove these overheads [SWM14].

Virtualizables – While escape analysis removes the overheads for the objects that are created

in the DER that do not escape the DER, sometimes it is possible for an object to be visible outside

the DER. Because of this possibility, partial escape analysis cannot optimize away redundant object

creations, unboxing and boxing operations for those objects. For example, the DIR-level stack

frame object can be created outside the DER and passed in to the DER, as seen between lines 2–12

in Figure 2.11. Here, if stack and depth are changed within the DER, the Frame object would

need to be updated back for the rare case that code outside the DER also accesses these fields. The

RPython framework supports virtualizables, which allows the removal of allocations and boxing

operations while also maintaining the ability to access the Frame object from outside the DER, as

seen in line 3 in Figure 2.11. Because operations over virtualizable objects are optimized away in

the JIT-compiled code, the Frame object may contain stale versions of its members. For any code

that accesses the Frame object outside the DER, the framework triggers a retrieval operation to

find the most up-to-date values from the compiled DER’s stack, similar to an on-stack replacement

described in Section 2.2.2. This operation makes read and write operations to Frame object’s fields
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cheaper in the DER (common case), at the expense of read and write operations outside the DER

(uncommon case).

Quasi-Immutables – Immutable members of classes can unlock optimizations through constant

propagations. However, there are are cases in an interpreter where certain class members can change

extremely rarely. An example of this is the methods bound to a class in Python. While Python

allows the addition or removal of methods to a class through monkey patching (e.g., in line 24 in

Figure 2.1), most programs modify existing types only very rarely. RPython has a special hint

to specify quasi-immutable members, and these are treated as immutables in the DER. RPython

maintains a list of quasi-immutable members that a DER assumes to be immutable. Any write

performed to these quasi-immutable members causes invalidation of all of the DERs that depend on

that particular quasi-immutable. This is also known as external invalidation, and is also supported

by Truffle using Assumption objects.

2.4.2 Meta-Tracing vs. Partial Evaluation

Truffle and RPython both achieve the goal of building JIT VMs with just an interpreter. This

property is crucial for both thrusts of this thesis. In both approaches, the complicated JIT-generation

framework is abstracted away. To make use of this framework, one has to write a relatively simpler

interpreter. I demonstrate meta-JIT frameworks are excellent tools for building agile hardware

simulators at various levels, including functional level, cycle level, and register-transfer level.

Secondly, since meta-JIT frameworks allow building JIT VMs for multiple dynamic languages,

it makes an excellent workload target to build hardware specialization. While this thesis could

have used the Truffle framework, I have chosen the RPython framework for a number of reasons:

(1) writing interpreters for RPython is slightly easier as it requires fewer hints [MD15]; (2) PyPy, the

currently fastest implementation of Python, is written in RPython and Python has not had as many

hardware acceleration proposals compared to JavaScript despite being a more popular language;

(3) Python is arguably more general purpose than JavaScript; and (4) not all parts of the Truffle

framework are open source (e.g., the Truffle JavaScript interpreter is not open source). Repeating

the studies presented in this dissertation using the Truffle framework is a potential direction for

future work.
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PART I

ACCELERATING HARDWARE SIMULATIONS WITH
META-TRACING JIT VMS

The first part of this thesis focuses on using the meta-tracing JIT technology to enable fast, accurate,

and agile hardware simulation. Broadly, hardware systems are modeled at three different levels:

functional-level (FL), cycle-level (CL), and register-transfer-level (RTL) modeling. FL models

purely focus on the functional behavior of hardware and do not model time. FL models can be

useful in initial design space exploration and techniques such as mixed-level modeling and sampling.

CL models add timing simulation in addition to functional behavior. CL models do not model

timing at perfect accuracy, but can still provide valuable insights as hardware designs are refined.

RTL simulations accurately model register-level resources and time in terms of cycle count. While

the increasing modeling detail can provide more accurate performance estimations, they also take

much longer to develop and to simulate. Part I of the thesis explores using meta-tracing for all

three modeling levels. Chapter 3 introduces Pydgin, where I present an approach to develop an

interpreter using the RPython meta-tracing JIT framework for a functional model of a processor.

Chapter 4 extends Pydgin to introduce JIT-compiled cycle-level models and embedding of the

functional-level model inside another cycle-level simulator, allowing CL modeling through sampling

and fast forwarding. Chapter 5 proposes novel meta-tracing JIT techniques to speed up PyMTL, a

Python-based RTL modeling framework.
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CHAPTER 3

PYDGIN: ACCELERATING FUNCTIONAL-LEVEL
MODELING USING META-TRACING JIT VMS

This chapter explores the use of meta-tracing JIT VMs to accelerate functional-level (FL)

hardware modeling. Pydgin provides a common framework for productively describing instruction

set architectures (ISAs) using an RPython-based domain-specific language (DSL). Pydgin uses these

instruction-set descriptions to create high-performance JIT-optimized instruction-set simulators by

making use of RPython’s meta-tracing JIT compiler. We implemented high-performance Pydgin

ISSs for MIPS, ARM, and RISC-V ISAs.

While Pydgin has been created in collaboration with Lockhart [LIB15, Loc15], I have led the

JIT optimizations to make Pydgin high-performance, and co-led the RISC-V port. Also importantly,

this chapter highlights that meta-tracing JIT technology can be promising for functional-level

hardware design, and is the starting point for my work on accelerating cycle-level hardware design

in Chapter 4.

3.1 Introduction

Instruction-set simulators (ISSs) are used to functionally simulate instruction-set architecture

(ISA) semantics. ISSs play an important role in aiding software development for experimental

hardware targets that do not exist yet. ISSs can be used to help design brand new ISAs or ISA

extensions for existing ISAs. ISSs can also be complemented with performance counters to aid in

the initial design-space exploration of novel hardware/software interfaces.

Performance is one of the most important qualities for an ISS. High-performance ISSs allow

real-world benchmarks (many minutes of simulated time) to be simulated in a reasonable amount of

time (hours of simulation time). For the simplest ISS type, an interpretive ISS, typical simulation

times are between 1 to 10 millions of instructions per second (MIPS) on a contemporary server-class

host CPU. For a trillion-instruction-long benchmark, a typical length found in SPEC CINT2006,

this would take many days of simulation time. Instructions in an interpretive ISS need to be

fetched, decoded, and executed in program order. To improve the performance, a much more

sophisticated technique called dynamic binary translation (DBT) is used by more advanced ISSs. In

DBT, the target instructions are dynamically translated to host instructions and cached for future
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use. Whenever possible, these already-translated and cached host instructions are used to amortize

much of the target instruction fetch and decode overhead. DBT-based ISSs typically achieve

performance levels in the range of 100s of MIPS, lowering the simulation time to a few hours.

QEMU is a widely used DBT-based ISS because of its high performance, which can achieve 1000

MIPS on certain benchmarks, or less than an hour of simulation time for a trillion-instruction-long

benchmark [Bel05].

Productivity is another important quality for ISSs. A productive ISS allows productive develop-

ment of new ISAs; productive extension for ISA specialization; and productive custom instrumenta-

tion to quantify the performance benefits of new ISAs and extensions. These productivity features

are especially important for emerging open-source ISAs that encourage domain-specific extensions.

For example, RISC-V is a new ISA that embraces the idea of specifying a minimalist standard ISA

and encouraging users to use its numerous mechanisms for extensions for their domain-specific

needs [WA17]. The users of RISC-V would likely need their ISS to be productive for extension and

instrumentation while still needing the high-performance features to allow them to run real-world

benchmarks. Bridging this productivity-performance gap requires agile simulation frameworks.

There has been previous ISSs that aim to achieve both productivity and performance. Highly

productive ISSs typically use high-level architecture description languages (ADLs) to represent the

ISA semantics [RABA04, ŽPM96, Pen11, QRM04, DQ06]. However, to achieve high performance,

ISSs use low-level languages such as C, with a custom DBT, which requires in-depth and low-level

knowledge of the DBT internals [May87, CK94, WR96, MZ04, TJ07, JT09]. To bridge this gap,

previous research have focused on techniques to automatically translate high-level ADLs into a

low-level language where the custom DBT can optimize the performance [PC11,WGFT13,QM03b].

However, these approaches tend to suffer because the ADLs are too close to low-level C, not very

well supported, or not open source.

A similar productivity-performance tension exists in the programming languages community.

Interpreters for highly productive dynamic languages (e.g., JavaScript and Python) need to be

written in low-level C/C++ with very complicated custom just-in-time compilers (JITs). A notable

exception to this is the PyPy project, the JIT-optimized interpreter for the Python language, which

was written in a reduced typeable subset of Python, called RPython [BCF

+
11a,BCFR09,AACM07].

To translate the interpreter source written in RPython to a native binary, the PyPy community also

developed the RPython translation toolchain. The RPython translation toolchain translates the
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interpreter source from the RPython language, adds a JIT, and generates C to be compiled with a

standard C compiler. Chapter 2 provides an extensive introduction on RPython, meta-tracing JIT

compilation, and related techniques. Pydgin is an ISS written in the RPython language, and uses

the RPython translation toolchain to generate a fast JIT-optimized interpreter (JIT and DBT in the

context of ISSs are very similar; we use both terms interchangeably in this chapter) from high-level

architectural descriptions in Python [LIB15]. This unique development approach of Pydgin and the

productivity features built into the Pydgin framework make this an ideal candidate to fill in the ISS

productivity-performance gap.

In the remainder of this chapter, Section 3.2 provides an introduction to the Pydgin ADL

and Pydgin framework, Section 3.3 explains the JIT annotations used in Pydgin to create a high-

perfromance ISS, Section 3.4 provides examples of Pydgin productivity, Section 3.5 highlights the

performance of Pydgin, and Section 3.7 concludes.

3.2 Pydgin ADL and Framework

Pydgin uses the RPython language as the basis of its embedded ADL. RPython has minimal

restrictions compared to Python, such as dynamic typing not being allowed, however it still inherits

many of the productivity features of full Python: simple syntax, automatic memory management, and

a large standard library. Unlike other embedded ADL approaches that use a low-level host language

such as C, architecture descriptions in Pydgin can make use of many of the high-level features of

the Python host language. The ADL in Pydgin consists of architectural state, instruction encodings,

and instruction semantics. The architectural state uses a plain Python class as shown in Figure 3.1.

The Pydgin framework provides templates for various data structures such as memories and register

files, and ISA implementers can either use these components directly or extend them to specialize

for their architecture. For example, the RISC-V register file special-cases x0 to always contain the

value 0. Figure 3.2 shows how instruction encodings are defined in Pydgin using a user-friendly

Python list of instruction name and a bitmask consisting of 0, 1, or x (for not care). Using this list,

the Pydgin framework automatically generates an instruction decoder. When encountering a match,

the decoder calls an RPython function with the name execute_<inst_name>. Figure 3.3 shows

examples of execute functions that implement the instruction semantics. The execute functions are

plain Python functions with two arguments: the state object and an instruction object that provides
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1 class State( object ):
2 _virtualizable_ = [’pc’, ’num_insts’]
3 def __init__( self, memory, reset_addr=0x400 ):
4

5 self.pc = reset_addr
6 self.rf = RiscVRegisterFile()
7 self.mem = memory
8

9 # optional state if floating point is enabled
10 if ENABLE_FP:
11 self.fp = RiscVFPRegisterFile()
12 self.fcsr = 0
13

14 # used for instrumentation, not arch. visible
15 self.num_insts = 0
16

17 # state for custom instrumentation (number of
18 # additions, number of misaligned memory operations,
19 # list of all loops)
20 self.num_adds = 0
21 self.num_misaligned = 0
22 # a dict that returns 0 if the key is not found
23 self.loop_dict = DefaultDict(0)
24

Figure 3.1: Simplified RISC-V Architectural State Description – State for instrumentation can also be added here.

The last three fields, num_adds, num_aligned, and loops_dict are examples of custom instrumentation state. Code

that is highlighted in red is an advanced JIT annotation.

convenient access to various instruction fields such as the immediate values. The execute function

can access and manipulate the fields in the state and instruction to implement the expected behavior.

The Pydgin framework provides the remaining ISA-independent components to complete the ISS

definition. In addition to providing various templates for storage data structures, bit manipulation,

system-call implementations, and ELF-file loading facilities, the framework most importantly

includes the simulation loop. Figure 3.4 shows a simplified version of the simulation loop, which

includes the usual fetch, decode, and execute calls. The Pydgin framework is designed so that ISA

implementers and users would not need to modify the framework for most use cases. Since the

ADL and the framework are written in RPython (a valid subset of Python), popular interpreters,

debugging, and testing tools for Python can be used out of the box for Pydgin. This makes Pydgin

development highly productive. Pydgin running on top of a Python interpreter is unsurprisingly

very slow (around 100 thousand instructions per second), so this usage should be limited to testing

and debugging with short programs.
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1 encodings = [
2 # ...
3 [ 'xori', 'xxxxxxxxxxxxxxxxx100xxxxx0010011' ],
4 [ 'ori', 'xxxxxxxxxxxxxxxxx110xxxxx0010011' ],
5 [ 'andi', 'xxxxxxxxxxxxxxxxx111xxxxx0010011' ],
6 [ 'slli', '000000xxxxxxxxxxx001xxxxx0010011' ],
7 [ 'srli', '000000xxxxxxxxxxx101xxxxx0010011' ],
8 [ 'srai', '010000xxxxxxxxxxx101xxxxx0010011' ],
9 [ 'add', '0000000xxxxxxxxxx000xxxxx0110011' ],

10 [ 'sub', '0100000xxxxxxxxxx000xxxxx0110011' ],
11 [ 'sll', '0000000xxxxxxxxxx001xxxxx0110011' ],
12 # ...
13

14 # new instruction encodings can be added by for
15 # example re-using custom2 primary opcode reserved
16 # for extensions
17 #['custom2', 'xxxxxxxxxxxxxxxxx000xxxxx1011011' ],
18 [ 'gcd', 'xxxxxxxxxxxxxxxxx000xxxxx1011011' ],
19 ]
20

Figure 3.2: RISC-V Instruction Encoding – Examples of instruction encodings showing some of the integer subset

instructions. Encodings are defined using the instruction name and a bitmask consisting of 0, 1, and x (for not care).

Reserved primary opcodes such as custom2 can be used for instruction set extensions.

The performance benefits of Pydgin comes from using the RPython translation toolchain.

RPython is a typeable subset of Python, and given an RPython source (e.g., PyPy or Pydgin), the

RPython translation toolchain performs type inference, optimization, and code generation steps to

produce a statically typed C-language translation of the interpreter. This C-language interpreter can

be compiled using a standard C compiler to produce a native binary of an interpretive ISS. This

interpretive version of Pydgin manages to reach 10 MIPS, which is much faster than interpreting

Pydgin on top of a Python interpreter. However, the real strength of the RPython translation

toolchain comes from its ability to couple a JIT compiler alongside the interpreter to be translated.

The translated interpreter and the JIT compiler are compiled together to produce a DBT-based

interpreter.

3.3 Pydgin JIT Generation and Optimizations

It is not immediately obvious that a JIT framework designed for general-purpose dynamic

languages will be suitable for constructing fast instruction set simulators. In fact, a DBT-ISS
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1 # add-immediate semantics
2 def execute_addi( s, inst ):
3 s.rf[inst.rd] = s.rf[inst.rs1] + inst.i_imm
4 s.pc += 4
5 # count number of adds
6 s.num_adds += 1
7

8 # store-word semantics
9 def execute_sw( s, inst ):

10 addr = trim_xlen( s.rf[inst.rs1] + inst.s_imm )
11 s.mem.write( addr, 4, trim_32( s.rf[inst.rs2] ) )
12 s.pc += 4
13 # count misaligned stores
14 if addr % 4 != 0:
15 s.num_misaligned += 1
16

17 # branch-equals semantics
18 def execute_beq( s, inst ):
19 old_pc = s.pc
20 if s.rf[inst.rs1] == s.rf[inst.rs2]:
21 s.pc = trim_xlen( s.pc + inst.sb_imm )
22 # record and count all executed loops
23 if s.pc <= old_pc:
24 s.loop_dict[(s.pc, old_pc)] += 1
25 else:
26 s.pc += 4
27

28 # extension example: greatest common divisor
29 def execute_gcd( s, inst ):
30 a, b = s.rf[inst.rs1], s.rf[inst.rs2]
31 while b:
32 a, b = b, a%b
33 s.rf[inst.rd] = a
34 s.pc += 4
35

Figure 3.3: RISC-V Instruction Semantics – Examples of three RISC-V instructions: addi, sw, and beq; and gcd
as an example of instruction-set extension implementing the greatest common divisor algorithm. Instructions in gray

are examples of custom instrumentation that can be added and are optional.

generated by the RPython translation toolchain using only the basic JIT annotations results in only

modest performance gains. This is because the JIT must often use worst-case assumptions about

interpreter behavior. For example, the JIT must assume that functions might have side effects,

variables are not constants, loop bounds might change, and object fields should be stored in memory.

These worst-case assumptions reduce opportunities for JIT optimization and thus reduce the overall

JIT performance.

37



1 jd = jit.JitDriver( greens = [’pc’], reds = [’state’],
2 virtualizables = [’state’] )
3 def instruction_set_interpreter( memory ):
4 state = State( memory )
5 while True:
6 jd.jit_merge_point( state.pc, state )
7

8 pc = jit.hint( state.pc, promote=True )
9 mem = jit.hint( memory, promote=True )

10

11 inst = memory.inst_read( pc, 4 ) # fetch
12 execute = decode( inst ) # decode
13 execute( state, inst ) # execute
14

15 state.num_insts += 1
16

17 if state.pc < pc:
18 jd.can_enter_jit( state.pc, state )
19

Figure 3.4: Simplified Pydgin Interpreter Loop – Code that is highlighted in blue are the basic JIT annotations,

and code that is highlighed in red are the advanced JIT annotations.

Existing work on the RPython translation toolchain has demonstrated the key to improving JIT

performance is the careful insertion of advanced annotations that provide the JIT high-level hints

about interpreter behavior [BCFR09, BCF

+
11a]. We use a similar technique by adding annotations

to the Pydgin framework specifically chosen to provide ISS-specific hints. Most of these advanced

JIT annotations are completely self-contained within the Pydgin framework itself. Annotations

encapsulated in this way can be leveraged across any instruction set specified using the Pydgin

embedded-ADL without any manual customization of instruction semantics by the user. Figure 3.4

shows a simplified version of the Pydgin interpreter with several of these advanced JIT annotations

highlighted.

We use several applications from SPEC CINT2006 compiled for the ARMv5 ISA to demonstrate

the impact of six advanced JIT annotations key to producing high-performance DBT-ISSs with the

RPython translation toolchain. These advanced annotations include: (1) elidable instruction fetch;

(2) elidable decode; (3) constant promotion of memory and PC; (4) word-based target memory;

(5) loop unrolling in instruction semantics; and (6) virtualizable PC. Figure 3.8 shows the speedups

achieved as these advanced JIT annotations are gradually added to the Pydgin framework. Speedups

are normalized against a Pydgin ARMv5 DBT-ISS using only basic JIT annotations. Figures 3.6
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1 class Memory( object ):
2 _immutable_fields_ = [ ’pages[*]’ ]
3 def __init__( self, size=2**10 ):
4 self.size = size << 2
5 self.data = [0] * self.size
6 self.pages = [ Page() for i in range( num_pages ) ]
7

8 def read( self, start_addr, num_bytes ):
9 word = start_addr >> 2

10 byte = start_addr & 0b11
11 if num_bytes == 4:
12 return self.data[ word ]
13 elif num_bytes == 2:
14 mask = 0xFFFF << (byte * 8)
15 return (self.data[ word ] & mask) >> (byte * 8)
16 # ... handle single byte read ...
17

18 def inst_read( self, start_addr, num_bytes ):
19 return self._inst_read( start_addr, num_bytes,
20 self.get_page( start_addr ).version )
21

22 @elidable
23 def _inst_read( self, start_addr, num_bytes , version ):
24 # The least significant bit of version indicates instruction page.
25 if version & 1 == 0:
26 self.get_page( start_addr).version += 1
27 return self.data[ start_addr >> 2 ]
28

29 @elidable
30 def get_page( self, addr ):
31 return self.pages[ addr >> 8 ]
32

33 def write( self, start_addr, num_bytes, value )
34 # ... handle the write ...
35 # Make the page a data page if it was an instruction page previously.
36 page = self.get_page( start_addr )
37 if page.version & 1 == 1:
38 page.version += 1
39

40 # ... rest of memory methods ...
41

42 class Page( object ):
43 _immutable_fields_ = [ ’version?’]
44 def __init__( self ):
45 self.version = 0

Figure 3.5: Simplified Pydgin Memory and Page Classes – Notice that for performance reasons, instructions are

loaded using the inst_read method, while remaining data loads use the read method. Code that are highlighed in

red are advanced JIT annotations.
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1 # Byte accesses for instruction fetch
2 i1 = getarrayitem_gc(p6, 33259)
3 i2 = int_lshift(i1, 8)
4 # ... 8 more JIT IR nodes ...
5

6 # Decode function call
7 p1 = call(decode, i3)
8 guard_no_exception()
9 i4 = getfield_gc_pure(p1)

10 guard_value(i4, 4289648)
11

12 # Accessing instruction fields
13 i5 = int_rshift(i3, 28)
14 guard_value(i5, 14)
15 i6 = int_rshift(i3, 25)
16 i7 = int_and(i6, 1)
17 i8 = int_is_true(i7)
18 # ... 11 more JIT IR nodes ...
19

20 # Read from regfile
21 i10 = getarrayitem_gc(p2, i9)
22

23 # Register offset calculation
24 i11 = int_and(i10, 0xffffff)
25 i12 = int_rshift(i3, 16)
26 i13 = int_and(i12, 15)
27 i14 = int_eq(i13, 15)
28 guard_false(i14)
29

30 # Read from regfile
31 i15 = getarrayitem_gc(p2, i13)

32 # Addressing mode
33 i15 = int_rshift(i3, 23)
34 i16 = int_and(i15, 1)
35 i17 = int_is_true(i16)
36 # ... 13 more JIT IR nodes ...
37

38 # Access mem with byte reads
39 i19 = getarrayitem_gc(p6, i18)
40 i20 = int_lshift(i19, 8)
41 i22 = int_add(i21, 2)
42 # ... 13 more JIT IR nodes ...
43

44 # Write result to regfile
45 setarrayitem_gc(p2, i23, i24)
46

47 # Update PC
48 i25 = getarrayitem_gc(p2, 15)
49 i26 = int_add(i25, 4)
50 setarrayitem_gc(p2, 15, i26)
51 i27 = getarrayitem_gc(p2, 15)
52 i28 = int_lt(i27, 33256)
53 guard_false(i28)
54 guard_value(i27, 33260)
55

56 # Update cycle count
57 i30 = int_add(i29, 1)
58 setfield_gc(p0, i30)

Figure 3.6: Unoptimized JIT IR for ARMv5 LDR Instruction – When provided with only basic JIT annotations, the

meta-tracing JIT compiler will translate the LDR instruction into 79 JIT IR nodes.

1 i1 = getarrayitem_gc(p2, 0) # register file read
2 i2 = int_add(i1, i8) # address computation
3 i3 = int_and(i2, 0xffffffff) # bit masking
4 i4 = int_rshift(i3, 2) # word index
5 i5 = int_and(i3, 0x00000003) # bit masking
6 i6 = getarrayitem_gc(p1, i4) # memory access
7 i7 = int_add(i8, 1) # update cycle count

Figure 3.7: Optimized JIT IR for ARMv5 LDR Instruction – Pydgin’s advanced JIT annotations enable the meta-

tracing JIT compiler to optimize the LDR instruction to just seven JIT IR nodes.

and 3.7 concretely illustrate how the introduction of these advanced JIT annotations reduce the JIT

IR generated for a single LDR instruction from 79 IR nodes down to only 7 IR nodes. In the rest of

40



Figure 3.8: Impact of JIT Annotations – Including advanced annotations in the RPython interpreter allows our

generated ISS to perform more aggressive JIT optimizations. However, the benefits of these optimizations varies from

benchmark to benchmark. Above we show how incrementally combining several advanced JIT annotations impacts ISS

performance when executing several SPEC CINT2006 benchmarks. Speedups are normalized against a Pydgin ARMv5

DBT-ISS using only basic JIT annotations.

this section, we describe how each advanced annotation specifically contributes to this reduction in

JIT IR nodes and enables the application speedups shown in Figure 3.8.

Elidable Instruction Fetch – RPython allows functions to be marked trace elidable using the

@elidable decorator. This annotation guarantees a function will not have any side effects and

therefore will always return the same result if given the same arguments. If the JIT can determine

that the arguments to a trace elidable function are constant, then the JIT can use constant folding

to replace the function with its result and a series of guards to verify that the arguments have not

changed. When executing programs without self-modifying code (see Section 3.3.1 for changes

to allow self-modifying code), the Pydgin ISS benefits from marking instruction fetches as trace

elidable since the JIT can then assume the same instruction bits will always be returned for a given

PC value. While this annotation, seen on line 22 in Figure 3.5, can potentially eliminate 10 JIT

IR nodes on lines 1–4 in Figure 3.6, it shows negligible performance benefit in Figure 3.8. This

is because the benefits of elidable instruction fetch are not realized until combined with other

symbiotic annotations like elidable decode.
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Elidable Decode – Previous work has shown efficient instruction decoding is one of the more

challenging aspects of designing fast ISSs [KA01, QM03a, FMP13]. Instruction decoding interprets

the bits of a fetched instruction in order to determine which execution function should be used to

properly emulate the instruction’s semantics. In Pydgin, marking decode as trace elidable allows

the JIT to optimize away all of the decode logic since a given set of instruction bits will always

map to the same execution function. Elidable decode can potentially eliminate 20 JIT IR nodes on

lines 6–18 in Figure 3.6. The combination of elidable instruction fetch and elidable decode shows

the first performance increase for many applications in Figure 3.8.

Constant Promotion of PC and Target Memory – By default, the JIT cannot assume that the

pointers to the PC and the target memory within the interpreter are constant, and this results in

expensive and potentially unnecessary pointer dereferences. Constant promotion is a technique

that converts a variable in the JIT IR into a constant plus a guard, and this in turn greatly increases

opportunities for constant folding. The constant promotion annotations can be seen on lines 8–9 in

Figure 3.4. Constant promotion of the PC and target memory is critical for realizing the benefits of

the elidable instruction fetch and elidable decode optimizations mentioned above. When all three

optimizations are combined, the entire fetch and decode logic (i.e., lines 1–18 in Figure 3.6) can

truly be removed from the optimized trace. Figure 3.8 shows how all three optimizations work

together to increase performance by 5⇥ on average and up to 25⇥ on 429.mcf. Only 464.h264ref

has shown no performance improvements up to this point.

Word-Based Target Memory – Because modern processors have byte-addressable memories

the most intuitive representation of this target memory is a byte container, analogous to a char

array in C. However, the common case for most user programs is to use full 32-bit word accesses

rather than byte accesses. This results in additional access overheads in the interpreter for the

majority of load and store instructions. As an alternative, we represent the target memory using

a word container. While this incurs additional byte masking overheads for sub-word accesses, it

makes full word accesses significantly cheaper and thus improves performance of the common case.

Lines 8–16 in Figure 3.5 illustrates our target memory data structure which is able to transform the

multiple memory accesses and 16 JIT IR nodes in lines 38–42 of Figure 3.6 into the single memory

access on line 6 of Figure 3.7. The number and kind of memory accesses performed influence the

benefits of this optimization. In Figure 3.8 most applications see a small benefit, outliers include
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401.bzip2 which experiences a small performance degradation and 464.h264ref which receives a

large performance improvement.

Loop Unrolling in Instruction Semantics – The RPython toolchain conservatively avoids

inlining function calls that contain loops since these loops often have different bounds for each

function invocation. A tracing JIT attempting to unroll and optimize such loops will generally

encounter a high number of guard failures, resulting in significant degradation of JIT performance.

The stm and ldm instructions of the ARMv5 ISA use loops in the instruction semantics to iterate

through a register bitmask and push or pop specified registers to the stack. Annotating these loops

with the @unroll_safe decorator allows the JIT to assume that these loops have static bounds and

can safely be unrolled. One drawback of this optimization is that it is specific to the ARMv5 ISA and

currently requires modifying the actual instruction semantics, although we believe this requirement

can be removed in future versions of Pydgin. The majority of applications in Figure 3.8 see only a

minor improvement from this optimization, however, both 462.libquantum and 429.mcf receive a

significant improvement from this optimization suggesting that they both include a considerable

amount of stack manipulation.

Virtualizable PC and Statistics – State variables in the interpreter that change frequently during

program execution (e.g., the PC and statistics counters) incur considerable execution overhead

because the JIT conservatively implements object member access using relatively expensive loads

and stores. To address this limitation, RPython allows some variables to be annotated as virtualizable.

Virtualizable variables can be stored in registers and updated locally within an optimized JIT trace

without loads and stores. Memory accesses that are needed to keep the object state synchronized

between interpreted and JIT-compiled execution is performed only when entering and exiting a JIT

trace. The virtualizable annotation (line 2 in Figure 3.1 and line 2 in Figure 3.4) is able to eliminate

lines 47–58 from Figure 3.6 resulting in an almost 2⇥ performance improvement for 429.mcf and

462.libquantum. Note that even greater performance improvements can potentially be had by also

making the register file virtualizable, however, a bug in the RPython translation toolchain prevented

us from evaluating this optimization.

Increased Trace Limit – Unlike a method JIT that compiles a block of statically defined

application code (typically an application method), tracing JITs build a trace of dynamically

executed code. This means that the size of the trace built by a tracing JIT can be unbounded.

The JIT cannot know a priori how long a trace will be, and if it is even bounded before tracing is
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completed. If a trace is extremely long, it will create significant memory and garbage collection

pressure, and can result in optimizations to take a considerably long time, even with near-linear-time

optimization algorithms. Furthermore, there is no guarantee how often a particular JIT trace will be

utilized once it is compiled. After compilation, if the control flow diverges from the JIT-compiled

trace, the remainder of the trace cannot be used. Given a longer trace usually has more guards, the

odds of a guard failure due to divergent control flow gets higher as the trace grows longer. Due to

these reasons, tracing JITs typically have a trace limit, where they abort building the trace if this

limit is reached. The default trace limit in the RPython framework is tuned for dynamic languages

such as Python, and balances giving up tracing too easily and unnecessarily compiling long traces

that might not be amortized. However, we observed that the default heuristic of 6000 maximum IR

nodes in the trace is not optimal for Pydgin. In particular, two of the benchmarks, 401.bzip2 and

464.h264ref had a high number of trace aborts due to the trace size exceeding the trace limit. This

is likely due to unrolling optimizations performed by C/C++ compilers, increasing the amount of

code that needs to be traced. We swept the trace from the default 6000 to 800,000 and observed an

11⇥ performance boost in 464.h264ref once the trace limit reaches 48,000 or more, and a 7⇥ boost

in 401.bzip2 once the trace limit reaches 96,000 or more. We use 400,000 as the new trace limit,

and as Figure 3.8 shows, only one benchmark (456.hmmer) had a modest slowdown with this trace

limit.

3.3.1 Self-Modifying Code Support

While self-modifying code can be rare in C/C++ applications, JIT VMs work by generating

optimized code and writing this to memory, and then execute this code. In addition, the tracing JIT

in RPython actually modifies the compiled code to patch guards to compiled bridges instead of

jumping to the blackhole interpreter. As JIT VMs are an important workload in general and to this

thesis in particular, supporting self-modifying code on Pydgin is an important goal to allow PyPy to

run on Pydgin.

Unfortunately, self-modifying code breaks the assumptions made in the elidable instruction

fetch optimization. This optimization assumes at a given address, always the same value has to

be returned. But if the application running on Pydgin modifies the data that corresponds to an

executable instruction, the elidable instruction fetch would return the stale instruction. It is possible

to disable this optimization, however the performance impact could make this prohibitive. To
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support high-performance execution of self-modifying code, we use a page versioning technique.

We define a Page class (lines 42–45 in Figure 3.5) that has a version field. Instruction reads

perform a call to get_page to find the corresponding Page object (line 20). The get_page method

is elidable since the page object for a given address is the same (lines 29–31). In Pydgin, we

support two types of pages: instruction and data. We encode instruction and data pages with odd

and even version numbers respectively. In _inst_read, the version of the corresponding page is

checked to see if it is a data or instruction page (line 25). If it is a data page, the version number is

incremented (line 26), and the data can be returned (line 27). Because _inst_read is also elidable,

the subsequent calls to this function with this address with the latest version can be optimized away.

To support self-modifying code, stores have to be special cased. In the write method, we

perform a similar check on the corresponding page of the write address. As lines 36–38 show, if the

page was an instruction page (odd), it has to be incremented by one to convert it into a data page.

This means that subsequent calls to _inst_read will use a different value for version, and since

there will not be a memoized value with the new version argument, the body of _inst_read has to

be performed again. However, this is not enough, as changing the version only affects future tracing.

Previously JIT-compiled code also needs to be invalidated in case an instruction, which was used

to build the JIT-compiled trace, has since been modified. To achieve this, the RPython framework

provides the quasi-immutable hint to be specified for a class. This can be seen in line 43, where

the question mark indicates that the version field is a quasi-immutable member of Page. The

quasi-immutable hint tells the JIT that the variable does not change very often, but is still allowed to

change. Using this hint, the JIT compiler can remove the reads to version by employing a write

barrier to the writers of version. A write barrier is a check in software that the VM inserts to all of

the writers of the field. If this check is triggered, the VM invalidates all of the JIT-compiled traces

that used that particular quasi-immutable variable. This effectively removes any lookup to page or

the version in the JIT-traces for the common case. However, this requires additional overheads in

the JIT-compiled trace for store instructions: the page is loaded and a guard is inserted to ensure

that it is writing to a data page. Unlike Pydgin, QEMU uses a page-based translation scheme using

the host pages, and to support self-modifying code, the translated code is invalidated if there are any

writes to a translated page [Bel05]. So, QEMU directly leverages the host memory-management

unit to find when the code is self-modifying, catch the appropriate exception, and avoid additional
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overheads in instruction fetch or store instructions. Using the host pages in this way is currently not

possible using the RPython framework.

We have successfully integrated self-modifying code support into Pydgin, which allowed us to

efficiently run JIT VMs on Pydgin, including PyPy.

3.4 Pydgin Productivity

Pydgin uses the RPython subset of standard Python in its ADL, and can use off-the-shelf Python

testing and debugging tools. This makes developing implementations for new ISAs productive.

Even though it is hard to quantify these productivity benefits, as a rough anecdote, Lockhart and

I added RISC-V support to Pydgin over the course of nine days, three of which were during a

busy conference. Implementing a simple (and slow) ISS in this duration is possible, however

implementing one that achieves 100+ MIPS of performance is a testament to the productivity and

performance features of Pydgin.

Facilitating domain-specific extensions to the existing ISA has become more commonplace with

RISC-V. These extensions require adding the encoding and semantics of the new instructions to the

ISS, and the software stack to take advantage of these new instructions. Pydgin makes the ISS-side

modifications productive. Line 18 in Figure 3.2 shows an example of adding a new domain-specific

greatest common divisor (gcd) instruction by reusing the custom2 primary opcode reserved for

extensions such as this. Lines 26–32 in Figure 3.3 show adding the semantics for the gcd instruction.

Note that this particular example does not require any new architectural state to be added.

Adding custom instrumentation productively to the ISS is an important feature of Pydgin.

Hardware and software designers are often interested in how well a new ISA or instruction-set

extension performs running realistic benchmarks. Software designers are interested in knowing

how often these new instructions are used to ensure the software stack is fully making use of the

new features. Hardware designers are interested in knowing how software tends to use these new

instructions, and what are the common arguments to a new functional unit, in order to design

optimized hardware for the common case. Custom instrumentation in Pydgin often involves adding

a new state variable as shown between Lines 14–23 in Figure 3.1. Here, we illustrate adding

counters or more sophisticated data structures to count number of executed instructions, number of

executed addition instructions, number of misaligned memory operations, and a histogram of all
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Figure 3.9: Performance Results – Pydgin without DBT, Pydgin with DBT, and Spike running SPEC CINT2006

benchmarks.

loops in the program. Figure 3.3 shows (in gray) how the new custom instrumentation can be added

directly in the instruction semantics with only a few lines of code.

Productive development, extensibility, and instrumentation in Pydgin are complemented with the

performance benefits of JIT compilation. Most of the JIT annotations necessary to use the full power

of the RPython JIT are in the Pydgin framework, so the additions of the ADL automatically make

use of these. The additional instrumentation code will automatically be JIT compiled. However,

depending on the computational intensiveness and frequency of the instrumentation code, there will

be a graceful degradation in performance.

3.5 Pydgin Performance

We evaluated the performance of Pydgin, with and without enabling the JIT, on SPEC CINT2006

benchmarks. We used a Newlib-based GCC 4.9.2 RISC-V cross-compiler to compile the bench-

marks. We used system-call emulation in Pydgin to implement the system calls. Some of the SPEC

CINT2006 benchmarks (400.perlbench, 403.gcc, and 483.xalancbmk) did not compile due to

limited system-call and standard C-library support in Newlib, so we omitted these. Figure 3.9 shows
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the performance results. As expected, Pydgin without JIT achieves a relatively low performance of

10 MIPS across the benchmarks. The performance is fairly consistent regardless of the benchmark,

and this is a characteristic of interpreter-based ISSs. Turning on the JIT in Pydgin increases the

performance to 90–750 MIPS range. This performance point is high enough to allow running the

reference datasets of these benchmarks (trillions of instructions) over a few hours of simulation

time. Different patterns in the target code are responsible for the highly varied performance, and

this is a characteristic of DBT-based ISSs.

To compare the performance of Pydgin to other ISSs for RISC-V, Figure 3.9 shows the perfor-

mance of Spike, the reference RISC-V ISS. Despite being an interpreter-based ISS, Spike manages

to achieve 40–200 MIPS, much faster than non-DBT Pydgin. This is because Spike is heavily

optimized to be a very fast interpretive ISS, and employs some optimization techniques that are

typical of DBT-based interpreters. Examples of these optimizations include a software instruction

cache that stores pre-decoded instructions, a software TLB, and an unrolled PC-indexed interpreter

loop to improve host branch prediction. These optimizations also cause the performance to be

similarly varied.

At the time of development, the QEMU [Bel05] port of RISC-V was not available. We anticipate

that the QEMU port is faster than Pydgin, however the fact that an up-to-date QEMU RISC-V port

was not available for a prolonged time is indicative of the lack of productivity in performance-

oriented ISSs. Pydgin’s strength lies in combining productivity and performance.

3.6 Related Work

A considerable amount of prior work exists on improving the performance of instruction set

simulators through dynamic optimization. Foundational work on simulators leveraging dynamic

binary translation (DBT) provided significant performance benefits over traditional interpretive

simulation [May87, CK94, WR96, MZ04]. These performance benefits have been further enhanced

by optimizations that reduce overheads and improve code generation quality of JIT compila-

tion [TJ07, JT09, LCL

+
11]. Current state-of-the-art ISSs incorporate parallel JIT-compilation task

farms [BFT11], multicore simulation with JIT-compilation [QDZ06,ABvK

+
11], or both [KBF

+
12].

These approaches generally require hand modification of the underlying DBT engine in order to

achieve good performance for user-introduced instruction extensions.
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In addition, significant research has been spent on improving the usability and retargetabil-

ity of ISSs, particularly in the domain of application-specific instruction-set processor (ASIP)

toolflows. Numerous frameworks have proposed using a high-level architectural description lan-

guage (ADL) to generate software development artifacts such as cross compilers [HSK

+
04,CHL

+
04,

CHL

+
05, ARB

+
05, FKSB06, BEK07] and software decoders [KA01, QM03a, FMP13]. Instruc-

tion set simulators generated using an ADL-driven approach [ARB

+
05, QRM04, QM05], or even

from definitions parsed directly from an ISA manual [BHJ

+
11], provide considerable productiv-

ity benefits but suffer from poor performance when using a purely interpretive implementation

strategy. ADL-generated ISSs have also been proposed that incorporate various JIT-compilation

strategies, including just-in-time cache-compiled (JIT-CCS) [NBS

+
02, BNH

+
04], instruction-

set compiled (ISCS) [RDM06, RBMD03, RMD03], hybrid-compiled [RMD09, RD03], dynamic-

compiled [QDZ06, BFKR09, PKHK11], multicore and distributed dynamic-compiled [DQ06], and

parallel DBT [WGFT13].

Penry et al. introduced the orthogonal-specification principle as an approach to functional

simulator design that proposes separating simulator specification from simulator implementation

[Pen11, PC11]. This work is very much in the same spirit as Pydgin, which aims to separate JIT

implementation details from architecture implementation descriptions by leveraging the RPython

translation toolchain. RPython has previously been used for emulating hardware in the PyGirl

project [BV09]. PyGirl is a whole-system VM (WSVM) that emulates the processor, peripherals,

and timing-behavior of the Game Boy and had no JIT, whereas our work focuses on JIT-enabled,

timing-agnostic instruction-set simulators.

3.7 Conclusion

Pydgin demonstrates meta-tracing JIT can be used to build high-performance instruction-set

simulators (ISS), approaching the performance of purpose-built dynamic-binary-translation-based

ISSs such as QEMU. Pydgin can achieve high performance while maintaining pseudo-code-like

architecture descriptions. Achieving good performance using the RPython framework requires

the insertion of hints at the interpreter level. However, many of these hints are inserted at the

Pydgin framework level, so architecture implementers do not need to worry about VM-level

hints. Pydgin can be especially productive from the perspective of adding additional instructions or
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instrumentation. Chapter 4 shows how I have used the Pydgin framework and its unique combination

of productivity and performance to enable fast, accurate, and agile cycle-level hardware modeling.
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CHAPTER 4

PYDGINFF: ACCELERATING CYCLE-LEVEL MODELING
USING META-TRACING JIT VMS

This chapter shows how meta-tracing JIT VMs can be used for accelerating cycle-level (CL)

hardware modeling. I have built on the Pydgin framework described in Chapter 3 to complement

fast-forward- and sampling-based methodologies to improve the performance of CL simulations.

While existing techniques allow fast and accurate simulation, meta-tracing JITs can help also enable

agile simulation. Agile simulation provides complete flexibility in terms of exploring the interaction

between software and hardware. I introduce two techniques: JIT-assisted fast-forward embedding

(JIT-FFE) to allow the meta-tracing JIT-based instruction-set simulator (ISS) to be embedded inside

a more detailed CL simulator; and JIT-assisted fast-forward instrumentation (JIT-FFI) to quickly

instrument the application to identify sampling points and keep parts of the architectural state warm.

4.1 Introduction

There is always a need for fast and accurate simulation of computer systems, but achieving these

goals is particularly challenging when exploring new architectures for which native functional-first

(trace-driven) simulation [pin15, CHE11, SK13, LCM

+
05, MKK

+
10, JCLJ08, MSB

+
05] is not

applicable. Traditional approaches to improving the speed and accuracy of simulation for new

architectures usually assume that the instruction-set architecture (ISA) and the entire software

stack are fixed. For example, checkpoint-based sampling will collect a set of checkpoints from a

profiling phase for a specific ISA and software stack, and then reuse these checkpoints across many

different experiments. However, there is an emerging trend towards vertically integrated computer

architecture research that involves simultaneously rethinking applications, algorithms, compilers,

run-times, instruction sets, microarchitecture, and VLSI implementation. Vertically integrated

computer architecture research demands agile simulation, which allows complete flexibility in

terms of exploring the interaction between software and hardware. Agile simulation is certainly

possible if one is willing to sacrifice either speed or accuracy. Table 4.1 illustrates how the state-

of-the-art simulation methodologies can be fast and agile (e.g., instruction-set simulation with

dynamic binary translation), accurate and agile (e.g., fast-forward-based sampling), or fast and

accurate (e.g., checkpoint-based sampling). A newer trend is to use native execution to speed
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Fast Accu
rat

e

Agil
e

Examples

DBT-Based ISS  #  [May87, MZ04, TJ07, LCL

+
11, BFT11, QDZ06, ABvK

+
11, LIB15]

FF-Based Sampling #   [PHC03, WWFH03, WWFH06b, SPHC02, SAMC99, LS00]

CK-Based Sampling   # [WWFH06a, VCE06, RPOM05]

NNFF-Based Sampling   G# [SNC

+
15, Bed04, AFF

+
09, PACG11, SK13]

PydginFF    

Table 4.1: Simulator Methodologies – Comparison of different simulator methodologies for achieving fast, accurate,

and agile simulation. DBT = dynamic-binary translation; ISS = instruction-set simulation; FF = fast-forward; CK =

checkpoint; NNFF = native-on-native fast-forward acceleration.

up functional simulation when the target (i.e., the simulated architecture) and the host (i.e., the

architecture running the simulator) are identical. Such “native-on-native” fast-forward acceleration

is fast, accurate, and partially agile; this technique enables exploring changes to the software and

microarchitecture, but does not enable research that involves changing the actual ISA. Our goal

in this chapter is to explore a new approach that can potentially enable fast, accurate, and agile

simulation for the entire computing stack.

Simple interpreter-based instruction-set simulators (ISSs) have significant overheads in fetching,

decoding, and dispatching target instructions. Augmenting an ISS with dynamic binary translation

(DBT) can enable fast and agile simulation. DBT identifies hot paths through the binary and

dynamically translates target instructions on this hot path into host instructions. This eliminates

much of the overhead of simple interpreter-based ISSs and enables simulation speeds on the order

of hundreds of millions of instructions per second. While traditional DBT-based ISSs are known to

be difficult to modify, recent work has explored automatically generating DBT-based ISSs from

architectural description languages [ARB

+
05, QRM04, QM05, BFKR09, LIB15]. DBT-based ISSs

are fast and agile, but these simulators do not accurately model any microarchitectural details.

Detailed simulation uses cycle- or register-transfer-level modeling to improve the accuracy of

simulation, but at the expense of slower simulation speeds. Modern microarchitectural simulators

run at tens of thousands of instructions per second, which means simulating complete real-world

programs is practically infeasible (e.g., simulating a few minutes of wall-clock time can require

months of simulation time). Researchers have proposed various sampling techniques to make

detailed simulation of large programs feasible [WWFH03,CHM96,WWFH06b,SPHC02,SAMC99].

These techniques either use statistical sampling or light-weight functional profiling of the overall

52



program to identify representative samples from the full execution. Detailed simulation is only

required for the samples, yet these techniques can still maintain accuracy within a high confidence

interval. Since the samples are usually a small ratio of the whole program, sampling can drastically

reduce the amount of time spent in slow detailed simulation. However, the samples tend to be

scattered throughout the entire execution, which raises a new challenge with respect to generating

the correct architectural state (e.g., general purpose registers, page tables, physical memory) and

potentially microarchitectural state (e.g., caches, branch predictors) to initiate detailed simulation of

each sample.

Fast-forward-based (FF-based) sampling focuses on providing accurate and agile simulation.

An interpreter-based ISS is used to “fast-forward” (FF) the program until the starting point of a

sample, at which point the simulator copies the architectural state from the interpreter-based ISS

into the detailed simulator [CHM96, SPHC02, SAMC99]. Some FF-based sampling schemes also

require functional warmup where microarchitectural state is also generated during fast forwarding

to ensure accurate detailed simulation of the sample [WWFH03, WWFH06b]. FF-based sampling

significantly improves the simulation speed compared to detailed simulation without sampling,

but it is still many orders-of-magnitude slower than DBT-based ISS. The execution time tends

to be dominated by the interpreter-based ISS used during fast-forwarding, and as a consequence

simulating a few minutes of wall-clock time can still require several days.

Native-on-native fast-forwarding-based (NNFF-based) sampling uses native execution instead

of an interpreter-based ISS for fast forwarding. These techniques typically use virtualization to keep

the host and simulated address spaces separate [SNC

+
15,Bed04,AFF

+
09,PACG11,SK13]. Because

NNFF-based sampling uses much faster native execution for functional simulation, it can achieve

fast, accurate, and partially agile simulation. NNFF-based sampling enables quickly changing

the microarchitecture and software, but ISAs different than the host cannot run natively. New

instructions and experimental ISAs cannot take advantage of native execution for fast-forwarding,

making such studies unsuitable for NNFF-based sampling.

Checkpoint-based sampling focuses on providing fast and accurate simulation. An ISS is used

to save checkpoints of the architectural state at the beginning of each sample [VCE06, WWFH06a,

RPOM05]. Once these checkpoints are generated for a particular hardware/software interface

and software stack, they can be loaded from disk to initiate detailed simulation of the samples

while varying microarchitectural configuration parameters. Checkpoint-based sampling improves
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overall simulation time by replacing the slow FF step with a checkpoint load from disk. However,

checkpoint-based sampling requires the hardware/software interface and software stack to be fixed

since regenerating these checkpoints is time consuming. Because checkpoint generation is rare, the

tools that profile and generate these checkpoints are usually quite slow; it can take many days to

regenerate a set of checkpoints after changing the hardware/software interface or the software stack.

Section 4.2 provides background on DBT-based ISS and sampling-based simulation techniques.

We make the key observation that while FF-based sampling is both accurate and agile, its speed

suffers from slow FF. This motivates our interest in enabling fast, accurate, and agile simulation

by augmenting FF-based sampling with recent research on DBT-based ISSs. However, there

are several technical challenges involved in integrating these two techniques. DBT-based ISSs

and detailed simulators use very different design patterns (e.g., page-based binary translation

vs. object-oriented component modeling), data representations (e.g., low-level flat memory arrays

vs. hierarchical memory modeling), and design goals (e.g., performance vs. extensibility). These

differences significantly complicate exchanging architectural state between DBT-based ISSs and

detailed simulators. Furthermore, instrumenting a DBT-based ISS to enable functional profiling

and/or functional warmup can be quite difficult requiring intimate knowledge of the DBT internals.

In Sections 4.3 and 4.4, we propose JIT-assisted fast-forward embedding (JIT-FFE) and JIT-

assisted fast-forward instrumentation (JIT-FFI) to enable fast, accurate, and agile simulation.

JIT-FFE and -FFI leverage recent work on the RPython meta-tracing just-in-time compilation (JIT)

framework for general-purpose dynamic programming languages [BCF

+
11a, BCFR09, pypa, Pet08,

AACM07] and the Pydgin framework for productively generating very fast DBT-based ISSs [LIB15].

JIT-FFE enables embedding a full-featured DBT-based ISS into a detailed simulator, such that the

DBT-based ISS can have zero-copy access (large data structures do not need to be copied) to the

detailed simulator’s architectural state. JIT-FFI enables productively instrumenting the DBT-based

ISS with just a few lines of high-level RPython code, but results in very fast functional profiling and

warmup. We have implemented JIT-FFE and -FFI in a new tool, called PydginFF, which can be

integrated into any C/C++ detailed simulator.

Section 4.5 evaluates PydginFF within the context of the gem5 detailed simulator [BBB

+
11] and

two different sampling techniques (periodic sampling through SMARTS [WWFH03, WWFH06b]

and targeted sampling through SimPoint [SPHC02]) when running a variety of SPEC CINT2006
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benchmarks. PydginFF is able to reduce the simulation time of FF-based sampling by over 10⇥;

simulations that previously took 1–14 days can now be completed in just a few hours.

To our knowledge, this is the first work to propose and demonstrate fast, accurate, and agile

simulation through the creative integration of DBT-based ISSs and detailed simulation. Unlike

related NNFF-based sampling approaches, our work allows the entire computing stack to be modified

in an agile manner. We anticipate this approach would be particularly useful for studying ISA

extensions or for exploring radical hardware acceleration techniques to improve the performance of

emerging workloads where the software is not static (e.g., just-in-time compilation and optimization

techniques). The primary contributions of this work are: (1) we propose JIT-assisted fast-forward

embedding to elegantly enable zero-copy architectural state transfer between a DBT-based ISS and

a detailed simulator; (2) we propose JIT-assisted fast-forward instrumentation to enable productive

implementation of fast functional profiling and warmup; and (3) we evaluate these techniques within

the context of PydginFF embedded into gem5 using SMARTS and SimPoint sampling techniques

and show compelling performance improvements over traditional sampling with interpreter-based

fast-forwarding.

4.2 Background

In this section, we provide brief background on DBT-based ISSs and sampling-based detailed

simulation, including an overview of the SMARTS and SimPoint methodologies used in our

evaluation.

4.2.1 DBT-Based Instruction Set Simulation

Instruction-set simulators (ISSs) facilitate software development for new architectures and the

rapid exploration and evaluation of instruction-set extensions. In an interpreter-based ISS, a dispatch

loop fetches and decodes target instructions before dispatching to a function that implements the

instruction semantics. Dynamic-binary translation (DBT) can drastically improve the performance

of interpreter-based ISSs by removing most of the dispatch-loop-based overheads. A DBT-based

ISS still uses an interpreter for light-weight profiling to find frequently executed code regions.

These hot regions are then translated into host instruction equivalents. The native assembly code
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generated using DBT is cached and executed natively whenever possible instead of using the

interpreter. DBT-based ISSs require sophisticated software engineering since they include profiling,

instruction-level optimizations, assembly code generation, code caching, and a run-time that can

easily switch between interpreter- and DBT-based execution. Coordinating all these components

while maintaining correctness and high performance makes DBT-based ISSs very hard to implement,

maintain, and extend. However, promising recent work has demonstrated sophisticated frameworks

that can automatically generate DBT-based ISSs from architecture description languages [PC11,

WGFT13, QM03b].

At the same time, there has been significant interest in JIT-optimizing interpreters for dynamic

programming languages. For example, JavaScript interpreters in web browsers make heavy use of

JIT-optimizations to enable highly interactive web content [v8]. Another notable JIT-optimizing

interpreter is PyPy for the Python language [BCF

+
11a, BCFR09, pypa, Pet08, AACM07]. The

PyPy project has created a unique development approach that utilizes the RPython translation

toolchain to abstract the process of language interpreter design from low-level implementation

details and performance optimizations. The interpreter developers write their interpreter (e.g., for

the Python language) in a statically typed subset of Python called RPython. Using the RPython

translation toolchain, an interpreter written in the RPython language is translated into C by going

through type inference, back-end optimization, and code generation phases. The translated C code

for the interpreter is compiled using a standard C compiler to generate a fast interpreter for the

target language. In addition, the interpreter designers can add light-weight JIT annotations to the

interpreter code (e.g., annotating the interpreter loop, annotating which variables in the interpreter

denote the current position in the target program, annotating when the target language executes a

backwards branch). Using these annotations, the RPython translation toolchain can automatically

insert a JIT into the compiled interpreter binary. RPython separates the language interpreter design

from the JIT and other low-level details by using the concept of a meta-tracing JIT. In a traditional

tracing JIT, a trace of the target language program is JIT compiled and optimized. In a meta-tracing

JIT, the trace is generated from the interpreter interpreting the target language program. Tracing

JITs need to be specifically designed and optimized for each language, while meta-tracing JITs are

automatically generated from the annotated language interpreter. The meta-tracing JIT approach

removes the need to write a custom JIT compiler for every new language.
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Figure 4.1: Sampling Methods – Different phases are represented with different letters. Sampling methods include

periodic, random, and targeted. The selected representative samples are simulated using detailed simulation; the portion

of the execution shown with a dashed line can use fast-forwarding or checkpointing.

Pydgin is a recent framework for productively building DBT-based ISSs [LIB15]. Pydgin

makes use of the RPython translation toolchain to bridge the productivity-performance gap between

interpreter- and DBT-based ISSs. An ISS in Pydgin is written as an interpreter in the RPython

language, which allows it to be translated and compiled into an efficient binary. Pydgin also has

the necessary annotations to allow RPython to automatically generate a very fast and optimized

JIT. RPython’s pseudocode-like syntax and the Pydgin library hide most performance-focused

optimizations from the ISA definition, making modifying or adding new instructions very productive.

Pydgin is a key enabler for the two techniques proposed in this chapter: JIT-assisted fast-forward

embedding and JIT-assisted fast-forward instrumentation.

4.2.2 Sampling-Based Detailed Simulation

Figure 4.1 illustrates three approaches to sampling-based detailed simulation: random sampling,

periodic sampling, and targeted sampling. Random sampling leverages the central limit theorem to

enable calculating confidence bounds on performance estimates. Periodic sampling is an approxi-

mation of random sampling, and similar statistical tools can be used to ensure accuracy. Periodicity

in the studied programs might skew the results for periodic sampling, however, this was shown not

to be an issue for large benchmarks in practice [WWFH03,WWFH06b]. Targeted sampling requires

a profiling step to find samples that are representative of different program regions. The profiling

information can be microarchitecture-dependent [SAMC99] or microarchitecture-independent (e.g.,

based on basic-block structure [SPHC02] or loop/ call graphs [LPC06, LSC04]).

A key challenge in sampling-based detailed simulation is generating the architectural (and

potentially microarchitectural) state to initiate the detailed simulation of each sample. Table 4.2
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Long-History Short-History Collect
Modeling Modeling Statistics

Fast-Forwarding

Functional Warmup X
Functional Profiling X
Detailed Warmup X X
Detailed Simulation X X X

Table 4.2: Simulation Terminology – Long-history modeling includes caches and branch predictors. Short-history

modeling includes core pipeline. Collecting statistics might include profiling or microarchitectural statistics.

shows different types of simulation to produce the initial state for detailed simulation of each sample.

Fast-forwarding is pure functional execution of the program and only the architectural state is

modeled. This is the least detailed type of simulation, hence it tends to be the fastest. However,

uninitialized microarchitectural state at the beginning of a sample can heavily bias the results.

Researchers usually use some form of warmup to minimize this cold-start bias. The processor core

pipeline contains relatively little “history” and thus requires warmup of a few thousand instructions.

Caches, branch predictors, and transaction look-aside buffers contain much more “history” and thus

require hundreds of thousands of instructions to minimize the cold-start bias [WWFH03, HS05,

ELDJ05]. Detailed warmup will initiate detailed simulation before the start of the sample. Detailed

warmup is good for warming up both long- and short-history microarchitecture, but is obviously

quite slow. Functional warmup will update long-history microarchitectural state using a purely

functional model during fast-forwarding. Because these long-history microarchitectural components

tend to be highly regular structures, adding these models to fast-forwarding usually has a modest

impact on simulation speed. A related type of simulation is functional profiling, which is used in

some sampling methodologies to determine where to take samples. Similar to functional warmup,

functional simulators can often use light-weight modifications to implement profiling with only a

modest impact on simulation speed. Table 4.3 compares two common sampling-based simulation

methodologies that we will use in our evaluation: SMARTS [WWFH03, WWFH06b, WWFH06a]

and SimPoint [SPHC02, LPC06, LSC04, VCE06, PHC03].

SMARTS is one of the most well-known statistical sampling methodologies. This approach uses

periodic sampling to approximate random sampling, which allows the authors to use statistical

sampling theory to calculate confidence intervals for the performance estimates. While the original

paper thoroughly evaluates different parameters such as the length of each sample, the number
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SMARTS SimPoint

Sampling Type periodic targeted

Functional Profiling optional required

Num of Samples 10,000 maximum 30

Len of Samples 1000 10 million

Len of Detailed Warmup 2000 optional

Between Samples functional warmup fast forwarding

Table 4.3: Comparison of SMARTS and SimPoint – SMARTS has an optional profiling step to determine the length

of the benchmark; SimPoint has a required functional profiling step to generate BBVs. Length of samples and detailed

warmup are in instructions.

of samples, and the amount of detailed warmup, the paper ultimately prescribes for an 8-way

processor: 10,000 samples, each of them 1000 instructions long, with 2000 instructions of detailed

warmup [WWFH03]. SMARTS is able to use a relatively short length of detailed warmup by

relying on functional warmup between samples. The authors determined that if functional warmup

is unavailable and pure fast-forwarding is used instead, detailed warmup of more than 500,000

instructions (i.e., 500⇥ the size of the sample) is required for some benchmarks.

SimPoint is one of the most well-known targeted sampling methodologies. SimPoint classifies

regions of dynamic execution by their signature generated from the frequency of basic blocks

executed in each region. SimPoint requires an initial functional profiling phase that generates basic

block vectors (BBVs) for each simulation interval. Each element of the BBV indicates the number

of dynamic instructions executed belonging to a particular basic block. Because the number of

basic blocks is large, the dimensionality of the BBVs are reduced using random projection and

then classified using the k-means clustering algorithm. One simulation interval from each cluster

is picked to be a representative sample or simulation point. While the original SimPoint paper

used 100 million instructions per sample with a maximum of 10 samples [SPHC02], a follow-up

work used 1 million instructions per sample with a maximum of 300 samples [PHC03]. The

most common parameters used in practice tend to be 10 million instructions per sample with a

maximum of 30 samples. In contrast to SMARTS, SimPoint uses fewer but longer samples. This

results in the inter-sample intervals of billions of instructions and thus SimPoint lends itself to

pure fast-forwarding. Since the samples are very long, the effect of cold-start bias is mitigated and

warmup is less critical.
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4.3 JIT-Assisted Fast-Forward Embedding

One of the biggest obstacles in augmenting FF-based sampling with a DBT-based ISS is coordi-

nating a single execution context for the target application between the ISS and the detailed simulator.

The entire architectural state (and microarchitectural state in the case of functional warmup) needs

to be communicated between these two simulators. These simulators often represent architectural

state differently, using different data structures, in different alignments, and at different granularities.

Performance-oriented DBT-based ISSs tend to represent the architectural state in forms that will

facilitate high performance, but detailed simulators often choose more extensible approaches that

allow running different ISAs and experiments. Another challenge is to ensure consistency of the

architectural state for switching. Dirty lines in the modeled caches and uncommitted modifications

to the architectural state (e.g., in host registers in DBT-based ISSs) need to be committed before

switching. Once the entire architectural state is gathered in a consistent form, another challenge

is marshalling this data, using an interprocess communication method such as writing/reading a

file/pipe, and finally unmarshalling and reconstructing the data in the new simulator. Performing all

of these tasks without incurring excessively long switching times can be quite challenging.

4.3.1 JIT-FFE Proposal

We propose JIT-assisted fast-forward embedding (JIT-FFE) to address this challenge. JIT-FFE

enables the fast DBT-based ISS to be dynamically linked to the slow detailed simulator, obviating

the need to run two different processes. Since both simulators share the same memory space, large

data structures (e.g., the simulated memory for the target) can be directly manipulated by both the

DBT-based ISS and the detailed simulator. This removes the need for marshalling, interprocess

communication, and unmarshalling, and thus enables zero-copy architectural state transfer. JIT-FFE

requires both simulators to obey the same conventions when accessing any shared data structures,

even at the expense of slightly reduced performance for the DBT-based ISS. JIT-FFE does not

require all data structures to be shared; for smaller architectural state (e.g., register file) simply

copying the data between simulators is usually simpler. While JIT-FFE elegantly enables using

a DBT-based ISS for fast-forwarding in SimPoint, JIT-FFE’s ability to provide zero-copy state

transfer is particularly effective in SMARTS due to large number of small samples (i.e., many

switches between the DBT-based ISS and detailed simulator).
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Figure 4.2: PydginFF Compilation and Simulation Flow

4.3.2 JIT-FFE Implementation

We have augmented Pydgin with JIT-FFE features, which we call PydginFF. PydginFF defines

a C/C++ application-programming interface (API) that is visible to the detailed simulator. This

API is used for getting and setting the architectural state, declaring a shared data structure for the

simulated memory to enable zero-copy state transfer, and starting functional simulation. The API is

defined both in the PydginFF source (in the RPython language) and in a C header file. RPython

has a rich library to manipulate and use C-language types and structures, and declare C-language

entry-point and call-back functions. Even though PydginFF is written in RPython, not C, the

RPython translation toolchain translates PydginFF into pure C. This means that after the C/C++

detailed simulator dynamically links against PydginFF, the detailed simulator can directly interact
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with PydginFF without crossing any language boundaries. This is a key enabler that allows efficient

zero-copy architectural state transfer between Pydgin ISS and the detailed simulator.

Figure 4.2 shows the compilation and simulation flow of PydginFF. Pydgin (without the Pydg-

inFF extensions) consists of an architectural description language (ADL) where the ISA is defined,

and the framework which provides ISA-independent features and JIT annotations. The ADL and

the framework go through the RPython translation toolchain which includes type inference, op-

timizations, code generation, and JIT generation. This produces the stand-alone JIT-optimized

Pydgin binary that can be used for stand-alone functional profiling. The JIT-FFE extensions to

Pydgin are also primarily in the RPython language, and go through the same RPython translation

toolchain. In addition, we have configured the toolchain to also produce a dynamic library at the

end of translation and compilation. C/C++ detailed simulators that are modified to take advantage

of the PydginFF API can simply dynamically link against PydginFF and use the Pydgin JIT for

fast-forwarding (and functional warmup) in sampled simulation. Targeted sampling methodologies

such as SimPoint also need a functional profile of the application. For these, the stand-alone Pydgin

binary can generate the functional profile which can be used by the detailed simulator to determine

when to start sampling.

4.4 JIT-Assisted Fast-Forward Instrumentation

While JIT-FFE enables a DBT-based ISS to be used for fast-forwarding within a detailed simu-

lator, common sampling methodologies also require instrumenting the functional simulation. For

example, SMARTS requires the long-history microarchitectural state to be functionally modelled,

and SimPoint uses basic-block vectors generated from functional profiling. Adding instrumentation

to a traditional DBT-based ISS can be very challenging. DBT-based ISSs tend to be performance

oriented and are not built with extensibility in mind. These simulators are usually written in low-

level languages and styles in order to get the best performance. Moreover, the instrumentation code

added to these simulators will not automatically benefit from the JIT and can significantly hurt

performance.
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Figure 4.3: JIT-FFI Flow – JIT-FFI instrumentation (in red) can be added to Pydgin (in black). instrument_inst
is called from the simulation loop to instrument every instruction; instrument_memop is called from the instruction

semantics of the store instruction to instrument memory operations. The @jit.dont_look_inside decorator causes

instrumentation to be JIT-FFI outlined. On the right is a simple loop in an example ISA and the resulting optimized JIT

trace with instrumentation.

4.4.1 JIT-FFI Proposal

We propose JIT-assisted fast-forward instrumentation (JIT-FFI) to address this challenge. JIT-

FFI allows the researcher to add instrumentation to the RPython interpreter, not to the JIT compiler

itself. RPython’s meta-tracing JIT approach generates a JIT compiler for the entire interpreter

including instruction execution and instrumentation. This means instrumentation code is not just

inlined but also dynamically JIT-optimized within the context of the target instruction stream.

JIT-FFI inlining can produce very high performance for simple instrumentation. However, JIT-FFI

inlining can reduce performance if the instrumentation includes complex data-dependent control

flow, since this irregularity causes the meta-tracing JIT to frequently abort trace formation. JIT-FFI

also includes support for JIT-FFI outlining where the instrumentation code is statically pre-compiled

into an optimized function that can be directly called from the JIT trace. Figure 4.3 shows a
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1 def instrument_memop( self, memop_type, address ):
2 line_idx, tag = self.get_idx_tag( address )
3

4 # get if hit or not, and the way if it was a hit
5 hit, way = self.get_hit_way( line_idx, tag )
6

7 # If miss, get a victim way and update the tag
8 if not hit:
9 way = self.get_victim( line_idx )

10 self.tag_array[ line_idx ][ way ] = tag
11

12 # On write, set dirty bit
13 if memop_type == WRITE:
14 self.dirty_array[ line_idx ][ way ] = True
15

16 # Update LRU bits
17 self.update_lru( line_idx, way )
18

19 @jit.dont_look_inside
20 def get_hit_way( self, line_idx, tag ):
21 for way in range( self.num_ways ):
22 if tag == self.tag_array[ line_idx ][ way ]:
23 return True, way
24 return False, -1
25

26 def update_lru( self, line_idx, way ):
27 self.lru_array[ line_idx ] = 0 if way else 1
28

29 def get_victim( self, line_idx ):
30 return self.lru_array[ line_idx ]

Figure 4.4: JIT-FFI for Cache Warmup – RPython code to model a 2-way set-associative cache. The

@jit.dont_look_inside decorator can be used to force JIT-FFI outlining.

simplified example of PydginFF code with JIT-FFI-inlined and -outlined instrumentation code,

target instruction stream, and the resulting JIT trace.

JIT-FFI is critical to achieving fast and agile simulation using both SMARTS and SimPoint. For

SMARTS, JIT-FFI enables very fast functional warmup of long-history microarchitectural state such

as caches. For SimPoint, JIT-FFI enables very fast collection of basic-block vectors for determining

representative samples.

4.4.2 JIT-FFI Implementation

We illustrate examples of instrumentation that users would write to take advantage of JIT-FFI in

functional warmup and functional profiling, respectively. PydginFF provides hooks for users to add
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1 # Called only when there are control-flow instructions
2 def instrument_ctrl( self, old_pc, new_pc, num_insts ):
3 bb_idx = self.get_bb_idx( old_pc, new_pc )
4

5 # bb_idx will never be equal to -1 in JIT trace
6 if bb_idx == -1:
7 # Register a new BB along with the size of the BB
8 bb_idx = self.register_new_bb( old_pc, new_pc,
9 num_insts - self.last_num_insts )

10

11 # Increment BBV entry by the size of the bb
12 self.bbv[ bb_idx ].increment()
13 self.last_num_insts = num_insts
14

15 # Get the index into the BBV table
16 @jit.elidable_promote()
17 def get_bb_idx( self, old_pc, new_pc ):
18

19 # Construct BB signature, check if BB was seen before
20 bb_sig = (old_pc << 32) | new_pc
21 if bb_sig not in self.bbv_map:
22 return -1
23

24 return self.bbv_map[ bb_sig ]

Figure 4.5: JIT-FFI for BBV Generation – RPython code to generate BBV for SimPoint. @jit.elidable_promote
is a JIT hint to enable aggressive JIT optimization.

custom instrumentation at different granularities (at instruction, memory operation, and control-flow

operation levels with instrument_inst, instrument_memop, instrument_ctrl function calls

respectively), and more of these hooks can be added. Figure 4.4 shows the JIT-FFI code within

PydginFF to implement a functional model of a 2-way set-associative cache for use in SMARTS.

The modeling is done in a rather straight-forward fashion, and the cache model maintains arrays

for the tags (tag_array), dirty bits (dirty_array), and LRU bits (lru_array). The RPython

language has a rich library of hints that can be given to the JIT, and an example for this can be seen

in the @jit.dont_look_inside decorator, which leaves the hit lookup function as a call from the

JIT trace and forces JIT-FFI outlining. Modeling the cache with a high-level language like RPython

and then using simple JIT annotations make JIT-FFI both productive and fast. We evaluate a case

study examining the effects of JIT-FFI inlining vs. outlining in set-associative and direct-mapped

cache models in Section 4.5.4. Note that it is usually more efficient not to store data in the JIT-FFI

caches, but simply retrieve the data from the main memory even on a cache hit (but still update
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tags and LRU bits accordingly). This means that the cache models do not benefit from JIT-FFE

zero-copy architectural state transfer, and their states need to be copied between PydginFF and the

detailed simulator.

Figure 4.5 shows the JIT-FFI code within PydginFF to implement basic-block vector (BBV)

generation for use in SimPoint. Basic blocks in BBV generation are defined to be dynamic streams

of instructions that have a control-flow instruction at the beginning and end, but not elsewhere. In the

instrument_ctrl function, line 3 calls get_bb_idx, which returns a unique basic-block index or

-1 if this basic block has not been seen before. The @jit.elidable_promote decorator on line 17 is

a JIT annotation that constant-promotes the arguments (guaranteeing that the arguments will always

be the same at the same point in the trace), and marks the function elidable (guaranteeing that this

function does not have any side effects and always returns the same value). This annotation allows

the function to be completely optimized away in the JIT trace and replaced with the corresponding

constant basic-block index. In the JIT trace, the basic-block index will never be zero (it would have

been observed before), so slower code to register a new basic block (lines 5–9) will be skipped. The

only operation that will be inlined in the JIT trace is incrementing the corresponding BBV entry in

line 12. This illustrates how JIT-FFI inlining can enable very high-performance instrumentation. We

evaluate the effect of enabling JIT-FFI inlining versus outlining for BBV generation in Section 4.5.5.

4.5 Evaluation

We have implemented JIT-FFE and -FFI in a new tool, called PydginFF. Although PydginFF

can be integrated into any C/C++ detailed simulator, we have chosen the popular gem5 detailed

simulator [BBB

+
11] for our evaluation, and we refer to the combined simulator as PydginFF+gem5.

4.5.1 Benchmarks

We quantify the performance of each simulator configuration (baseline SMARTS, baseline

SimPoint, PydginFF+gem5 SMARTS, and PydginFF+gem5 SimPoint), using the SPEC CINT2006

benchmark suite. We use the ARMv5 instruction set for our target software, and a Newlib-based

GCC 4.3.3 cross-compiler. We use the recommended optimization flags (-O2) for compiling the

benchmarks. Three of the SPEC benchmarks, 400.perlbench, 403.gcc, and 483.xalancbmk failed to
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SMARTS SimPoint

Dyn % Det Dyn # % Det
Benchmark Dataset Inst Sim Inst Spl Sim

401.bzip2 chicken 30 195 0.020 194 25 0.200

429.mcf inp.in 373 0.008 373 27 0.100

445.gobmk 13x13.tst 323 0.009 316 20 0.090

456.hmmer nph3 swiss41 1112 0.003 952 13 0.020

458.sjeng ref.txt 2974 0.001 2921 13 0.007

462.libquantum 1397 8 3069 0.001 3036 17 0.008

464.h264ref foreman_ref 753 0.004 707 15 0.030

471.omnetpp omnetpp.ini 1282 0.002 1254 3 0.004

473.astar BigLakes2048 434 0.007 397 15 0.060

Table 4.4: Benchmarks – Dyn Inst = number of dynamic instructions when run to completion (in billions); % Det Sim =

percentage simulated using the detailed simulator; # Spl = number of samples. SimPoint has slightly fewer dynamic

instructions since the simulation can stop after the final sample.

gem5 fun gem5 det Pydgin gem5 SM gem5 SP PydginFF+gem5 SM PydginFF+gem5 SP

Benchmark IPS T* IPS T** IPS T IPS T* IPS T* IPS T vs. g5 IPS T vs. g5

401.bzip2 2.4M 23h 54K 41d 613M 5.3m 2.2M 1.0d 2.0M 1.1d 44M 1.2h 20⇥ 29M 1.9h 14⇥
429.mcf 2.4M 1.8d 60K 72d 487M 13m 2.0M 2.1d 1.9M 2.2d 34M 3.1h 17⇥ 25M 4.2h 13⇥
445.gobmk 2.3M 1.6d 51K 74d 119M 45m 2.0M 1.8d 1.9M 1.9d 14M 6.3h 7⇥ 40M 2.2h 20⇥
456.hmmer 2.3M 5.6d 67K 192d 582M 32m 2.1M 6.2d 1.9M 5.8d 49M 6.4h 24⇥ 195M 1.4h 102⇥
458.sjeng 2.4M 14d 58K 596d 260M 3.2h 2.1M 16d 2.1M 16d 24M 1.5d 11⇥ 160M 5.1h 76⇥
462.libquantum 2.6M 14d 66K 534d 605M 1.4h 2.2M 16d 2.1M 17d 93M 9.1h 43⇥ 292M 2.9h 141⇥
464.h264ref 2.4M 3.6d 66K 133d 732M 17m 2.1M 4.1d 2.0M 4.0d 34M 6.2h 16⇥ 157M 1.2h 77⇥
471.omnetpp 2.8M 5.4d 62K 240d 474M 45m 2.3M 6.4d 2.3M 6.3d 27M 13h 12⇥ 209M 1.7h 90⇥
473.astar 2.5M 2.0d 64K 78d 386M 19m 2.1M 2.3d 2.0M 2.3d 31M 3.9h 15⇥ 67M 1.6h 34⇥

Table 4.5: SMARTS and SimPoint Results – IPS = inst/second; T = simulation time (T* = extrapolated from 10B

inst, T** = extrapolated from 500M inst); vs. g5 = speedup relative to gem5 baseline; fun = pure functional simulation;

det = pure detailed simulation; SM = sampling-based simulation with SMARTS, SP = sampling-based simulation with

SimPoint.

compile for the target configuration due to limited system call support in our cross-compiler so we

omit these from our results. Table 4.4 shows the benchmark setup details. We used the ref datasets

for all of the benchmarks, and picked one dataset in cases where there were multiple datasets. We

also show the dynamic instruction counts of the benchmarks, which range from 200 billion to

3 trillion instructions.
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4.5.2 Simulation Methodology

Our baseline simulation setup uses the gem5 [BBB

+
11] detailed microarchitecture simulator.

We have implemented the SMARTS and SimPoint sampling techniques in gem5. Both baseline

configurations use gem5’s interpreter-based atomic simple processor for fast-forwarding, functional

warmup, and functional profiling; and the cycle-level out-of-order processor model for detailed

simulation. We use the ARMv5 instruction set for both PydginFF and gem5 with system-call

emulation. For both configurations, the detailed microarchitecture models a 4-way superscalar

pipeline with 4 integer ALUs, 2 AGUs, 32 entries in the issue queue, 96 entries in the ROB, and 32

entries each in load and store queues. We model a 2-way 32KB L1 instruction and a 2-way 64KB L1

data cache. The baseline SMARTS and SimPoint implementations use the configurations presented

in Table 4.3. The SMARTS configuration only uses functional warmup between the samples, and

SimPoint uses fast-forwarding until 500,000 instructions before the start of the simulation point and

then switches to detailed warmup. Although optional, it is common practice to use detailed warmup

with SimPoint.

As mentioned in Sections 4.3 and 4.4, we have used the open-source Pydgin DBT-based

ISS [LIB15, pyd15] to develop PydginFF. We embed PydginFF into gem5 (PydginFF+gem5) and

evaluate the performance, again using SMARTS and SimPoint, against the baseline SMARTS

and SimPoint implementations with gem5 alone. The PydginFF+gem5 configurations use the

DBT-based ISS for fast-forwarding, functional warmup, and functional profiling, and the same

gem5 cycle-level microarchitectural model for detailed warmup and detailed simulation. We use

PyPy/RPython 2.5.1 to translate PydginFF, GCC 4.4.7 to compile both PydginFF and gem5, and

SimPoint 3.2 to generate simulation points from BBVs. We run all experiments on an unloaded

4-core 2.40 GHz Intel Xeon E5620 machine with 48 GB of RAM.

Table 4.4 shows sampling-related statistics of the benchmarks we used. A difference between

the two sampling techniques is that SimPoint requires running the target program until the end of

the last simulation point instead of running it to completion. However, it can be seen that the last

simulation points tend to be close to the completion of the program, so this benefit is minimal. The

number of simulation points in SimPoint can be varied as well, and our benchmarks showed a large

range from 3 to 27. This number determines how much total detailed simulation needs to take place,

which can affect the simulation performance. Since SMARTS uses the same number of samples

for each benchmark, the total detailed simulation is the same. The table also shows the percentage
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Figure 4.6: SMARTS Results – gem5 and PydginFF+gem5 results using SMARTS. Note the log scale for duration.

with profiling = functional profiling added on top of simulation time.

of detailed simulation (including detailed warmup) that takes place in each sampling technique.

These values are extremely low, indicating that fast-forwarding does indeed constitute 99+% of the

simulation and motivating the need for faster fast-forwarding and functional warmup.

4.5.3 Overall Results

Table 4.5 shows the instructions per second (IPS) and elapsed time results of pure gem5, pure

Pydgin, and PydginFF+gem5 configurations. gem5 simulator performance is very consistent across

different benchmarks: around 2.5 MIPS and 60 KIPS for functional and detailed simulations,

respectively. Even on the functional simulator, the simulations can take many days. Simulating the

entire lengths of the longer benchmarks in the detailed model would take well over a year, which

clearly is not feasible. Note that the table shows the results for gem5 functional simulation without

any cache modeling. However, we also ran gem5 functional simulation with cache modeling (e.g.,

for functional warmup) and the results were very close to without caches. The Pydgin column

shows the performance that a pure DBT-based ISS can achieve, between 100–700 MIPS. It should

be noted that DBT-based ISS performance is more varied compared to interpreter-based ISSs like

69



Figure 4.7: SimPoint Results – gem5 and PydginFF+gem5 results using SimPoint. Note the log scale for duration.

with profiling = functional profiling added on top of simulation time.

the gem5 atomic model. This variation is due to dynamic optimizations done on instruction streams:

some instruction streams benefit more than others. The longest-running benchmark took only about

3 hours on the DBT-based ISS.

The SMARTS results can be seen in Table 4.5 (gem5 SM and PydginFF+gem5 SM columns) and

in Figure 4.6. The plot shows the total duration of simulation in log timescale. In the baseline gem5

SMARTS configuration, simulations can take 1–16 days, similar to gem5 functional model. This is

because the vast majority of instructions are being executed in the functional warmup mode. To

guarantee low error bounds, SMARTS needs a sufficient number of samples. A functional profiling

step hence might be necessary to determine the total number of instructions, which can then be

used to compute the distance between samples to reach the target number of samples. Adding this

optional functional profiling phase roughly doubles the simulation time on gem5. PydginFF+gem5

using SMARTS sampling performs much better: between one hour to less than two days. The

speedup of this technique compared to gem5 can be seen in Table 4.5, which is well over an order

of magnitude for most of the benchmarks.

The SimPoint results are also shown in Table 4.5 (gem5 SP and PydginFF+gem5 SP columns)

and in Figure 4.7. The baseline gem5 SimPoint results are similar to SMARTS because the
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Figure 4.8: PydginFF Cache Modeling – PydginFF = PydginFF with no cache modeling; PydginFF DM/SA out-

line/inline = PydginFF modeling a direct-mapped/set-associative cache modeling with JIT-FFI outlining/inlining; SA

opt = set-associative cache with optimized JIT-FFI inlining; SA+L2 opt = L1 and L2 caches (both set-associative) with

optimized JIT-FFI inlining. Note that this study uses stand-alone PydginFF with no gem5 detailed simulation. 458.sjeng

and 464.h264ref with a JIT-FFI inlined SA cache model were aborted due to using too much memory.

execution time again is dominated by the highly predictable performance of the gem5 functional

model. PydginFF+gem5 manages to get even better speedups compared to SMARTS (in the range

13–141⇥) with a maximum execution time of only about five hours. Even including functional

profiling, which SimPoint requires for every new binary, PydginFF+gem5 only takes about nine

hours in the worst case, compared to 32 days using the baseline. The reason why SimPoint

performance is better on PydginFF+gem5 compared to SMARTS is because SimPoint uses fast-

forwarding instead of functional warmup, and fast-forwarding on our DBT-based ISS is much

faster, as will be shown in Section 4.5.4. One final thing to note is that longer-running benchmarks

(e.g., 462.libquantum and 458.sjeng) can get much better speedups compared to shorter-running

benchmarks (e.g., 401.bzip2 and 429.mcf) due to the lower ratio of detailed simulation to functional

simulation.
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4.5.4 JIT-FFI Case Study: Cache Modeling

The SMARTS technique requires functional warmup to be used instead of fast-forwarding to

generate the microarchitectural state before the detailed simulation starts. Functional warmup

requires the long-history microarchitectural structures (e.g., caches) to be simulated in the functional

model. We used JIT-FFI to implement direct-mapped and set-associative caches in PydginFF.

In Figure 4.8, we compare the performances of stand-alone PydginFF (without gem5 detailed

simulation) using direct-mapped and set-associative cache modeling to PydginFF without caches.

We also compare the effects of using JIT-FFI inlining and outlining when implementing the cache

model. In this study, PydginFF without caches models virtual memory, so its performance is slightly

lower than unmodified Pydgin that uses raw memory. A JIT-FFI outlined direct-mapped cache

significantly reduces performance compared to PydginFF without caches (up to 10⇥). However,

JIT-FFI inlining can bring the performance back to reasonable levels (within 50% of PydginFF

without caches). Outlined set-associative cache unsurprisingly has an even worse performance

than outlined direct-mapped cache due to the increased complexity in the cache model. However,

unlike the direct-mapped cache where JIT-FFI inlining helps, JIT-FFI-inlined set-associative cache

performs worse that outlining.

The reason for this slowdown is because the set-associative cache model has data-dependent

control-flow at line 22 in Figure 4.4. This if statement checks each cache way for the tag, and this

information is recorded in the generated trace. Any time the same static instruction loads from or

stores to a memory address that belongs to another cache way, the trace is aborted, which causes the

observed speed degradation. These frequent trace aborts usually cause new traces to be generated,

each of them with a different control-flow path. For certain benchmarks, the explosion of compiled

traces can use up all of the host memory, as was observed in 458.sjeng and 464.h264ref. However,

in one benchmark, 462.libquantum, the static loads and store instructions usually hit the same way,

and do not display this pathological behavior. Due to these observations, PydginFF uses JIT-FFI

outlining for set-associative cache models including for the results in the previous section.

We have also implemented a more optimized set-associative cache model using JIT-FFI inlining

(shown as PydginFF SA opt in Figure 4.8). This uses a relatively large (~1 GB) lookup table for the

entire address space to map every cache line to its corresponding way in the cache, or an invalid

value to indicate a miss. This removes the data-dependent control flow, and manages to increase

the performance to 50–310 MIPS for most benchmarks. Note that for a 64-bit ISA, this optimized
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Figure 4.9: BBV Generation with Optimizations – No BBV gen = unmodified Pydgin that does not gen-

erate BBVs; BBV gen outline/inline = BBV generation with JIT-FFI outlining/inlining; elidable = uses the

@jit.elidable_promote hint. Note that this study uses stand-alone Pydgin and PydginFF with no gem5 detailed

simulation.

implementation might require a prohibitively large lookup table. Figure 4.8 also shows the impact

of adding a set-associative L2 cache; PydginFF is still able to achieve simulation performance

between 30–300 MIPS for most benchmarks.

4.5.5 JIT-FFI Case Study: BBV Generation

Basic-block vectors (BBVs) generated from the functional profiling step are crucial for the

SimPoint sampling methodology. Because these BBVs need to be generated any time the target

software changes, it is important that the BBV generation is fast and does not prevent agile

simulation. We used JIT-FFI to implement the BBV generation as explained in Section 4.4.2. We

compared unmodified Pydgin to BBV generation with JIT-FFI outlining, JIT-FFI inlining, and using

the more advanced @jit.elidable_promote hint. These experiments were done on stand-alone

Pydgin and PydginFF without gem5 detailed simulation. Figure 4.9 shows the results for this

case study. The goal with inlining and eliding optimizations is to approach the unmodified Pydgin

performance, hence have the least possible overhead in generating the BBVs. Figure 4.9 shows that
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unoptimized (outlined) BBV generation can have more than 7⇥ slowdown compared to unmodified

Pydgin. With the addition of simple JIT annotations, the BBV generation overhead shrinks to

around 20%.

4.6 Related Work

There has been significant prior work on DBT-based instruction-set simulators. Seminal work

on DBT techniques provided significant performance benefits over traditional interpretive sim-

ulation [May87, CK94, WR96, MZ04]. These performance benefits have been further enhanced

by optimizations which reduce overheads and improve code generation quality of just-in-time

compilation (JIT) [TJ07, JT09, LCL

+
11]. Current state-of-the-art ISSs incorporate parallel JIT-

compilation task farms [BFT11], multicore simulation with JIT-compilation [QDZ06, ABvK

+
11],

or both [KBF

+
12]. This work builds on top of Pydgin [LIB15], which uses a slightly different

approach for building DBT-based simulators. Instead of a custom JIT, Pydgin leverages the RPython

framework [BCF

+
11a, BCFR09, pypa, Pet08, AACM07], which allows encoding the architecture

description in pure Python. The RPython framework then adds a JIT to the interpreter and translates

it to C. There has also been prior work on embedding the cycle-approximate hardware model

directly in the JIT [Fra08, BFT10]. While these approaches tend to be fast and agile for changing

the software, they are not agile for changing the modeled microarchitecture.

To reduce simulation time, KleinOsowski et. al proposed manually crafting smaller datasets

for the SPEC 2000 suite that were representative of the larger datasets [KFML00]. However,

manually manipulating the datasets is not agile for frequent changes in the software stack. Sampling

approaches, in contrast, are automated, so they are much more agile in the face of changing soft-

ware. Researchers proposed picking samples randomly [LPP88, CHM96], periodically [WWFH03,

WWFH06b], and targeted [SPHC02, SAMC99, LS00]. Random and periodic sampling methodolo-

gies can be used to prove error bounds. Targeted sampling uses either microarchitectural [SAMC99]

or microarchitecture-independent [SPHC02, LS00] metrics, to identify samples that are representa-

tive of the overall execution. A notable work on SimPoint in the context of modeling different ISAs

is Perelman et. al, where the authors propose techniques to synchronize the simulation points on

different ISAs to correspond to the same program phases [PLP

+
07]. This work is orthogonal to

PydginFF.
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Checkpointing is a very popular technique to reduce the simulation time further. Architectural

state is usually very large, so checkpoint sizes on the disk is a concern, especially when there

are many checkpoints [VCE06]. However, there are proposals to reduce the checkpoint size by

analyzing which memory addresses are actually used in each sample, and then only storing these

values in the checkpoint [WWFH06a, VCE06], and over time cheaper disk space made this issue

less of a concern. The most serious shortcoming of checkpointing is its lack of agility: every time

the software or the program inputs change, checkpoints need to be re-generated.

Other techniques to improve the simulation time includes Perelman et. al, which proposes an

improved version of the SimPoint algorithm where simulation points that occur early in the program

execution are prioritized to reduce the amount of fast-forwarding necessary [PHC03]. This technique

can be used in conjunction with our proposal to improve simulation time. Wisconsin Wind Tunnel is

one of the earliest uses of direct execution to speed up simulator performance [RHL

+
93, MRF

+
00].

Patil et. al use the Pin [LCM

+
05,pin15] dynamic binary instrumentation tool to generate the profiling

information to be used by SimPoint [PCC

+
04]. Similarly, Szwed et. al propose native execution for

fast-forwarding, by re-compiling the original code to explicitly extract the architectural state to be

copied to a detailed simulator for sampling [SMB

+
04]. However, both of these approaches only

work if the target ISA is the same as the host ISA, which is usually not the case for new ISA research

or studying new ISA extensions. Schnarr and Larus proposed using native execution coupled

with microarchitectural modeling of an out-of-order processor [SL98]. They use memoization

to cache timing outcomes of previously seen basic blocks and starting microarchitectural states

and skip detailed simulation if they hit in the timing cache. Brankovic et. al looked into the

problem of simulating hardware/software co-designed processors which usually include a software

optimization layer [BSGG14]. For accurate simulation, the software optimization layer needs to be

warmed up in addition to the microarchitecture. The authors detect ways to determine when the

optimization layer is warmed up, and PydginFF would be an orthogonal technique to speed up the

software-optimization-layer warmup.

Another notable work that makes sampling-based simulation fast is Full Speed Ahead (FSA)

[SNC

+
15], where the authors also acknowledge the need for agility in the context of hardware/-

software co-design. FSA uses virtualized native execution for fast-forwarding until the samples

and also uses zero-copy memory transfer when switching between the virtualized native execution

and detailed model. However, because FSA relies on native execution, it is not suitable when
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the ISA is different than the host in the context of ISA extensions or modeling new ISAs. Fur-

thermore, fast functional warmup is not supported on FSA, which is required by SMARTS. The

COTSon [AFF

+
09] project uses fast-forward-based sampling, where the SimNow ISS [Bed04] is

used to fast-forward between the samples. SimNow uses DBT techniques to speed up the simulation.

However, SimNow is not open-source and only supports the x86 ISA, so it is not possible to use

this flow for agile ISA extension developments. Other recent attempts to make simulation fast (e.g.,

Graphite [MKK

+
10], CMPSim [JCLJ08], ZSim [SK13], MARSS [PACG11], and Sniper [CHE11])

also rely on dynamic binary instrumentation, so are not suitable when the target ISA is different

than the host. The only other simulator that uses JIT technology for fast-forwarding that we are

aware of is ESESC [AR13]. ESESC uses JIT-optimized QEMU ISS for fast-forwarding and func-

tional warmup. However, QEMU is a performance-focused ISS that sacrifices productivity for

performance, which makes experimenting with ISA extensions challenging. Pydgin focuses both on

productivity and performance, and gives researchers agility in modifying the entire computation

stack.

4.7 Conclusion

State-of-the-art simulation methodologies can be fast and agile (e.g., instruction-set simulation

with dynamic binary translation), accurate and agile (e.g., fast-forward-based sampling), or fast and

accurate (e.g., checkpoint-based sampling). Native-on-native fast-forward-based sampling is fast,

accurate, but partially agile. In this chapter, we have proposed JIT-assisted fast-forward embedding

(JIT-FFE) and JIT-assisted fast-forward instrumentation (JIT-FFI) that elegantly enable augmenting

a detailed simulator with a DBT-based ISS. We have implemented JIT-FFE and -FFI in a new tool,

called PydginFF, and we have evaluated our approach within the context of the gem5 detailed

simulator and two different sampling techniques (periodic sampling with SMARTS and targeted

sampling with SimPoint). Our results show that PydginFF is able to reduce the simulation time of

fast-forward-based sampling by over 10⇥, truly enabling fast, accurate, and agile simulation.

PydginFF opens up a number of interesting directions for future research. JIT-FFE’s ability

to provide zero-copy state transfer and JIT-FFI’s ability to easily model microarchitectural com-

ponents can be applied to branch predictors and TLBs. PydginFF can be integrated with any

C/C++ microarchitectural simulator, so we are exploring integration with simulators that support
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a functional/timing split or even register-transfer-level models. Finally, PydginFF enables new

kinds of vertically integrated research. For example, PydginFF can enable exploring hardware

acceleration and ISA specialization for emerging workloads such as JIT-optimized interpreters of

dynamic programming languages, using fast, accurate, and agile simulation.
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CHAPTER 5

MAMBA: ACCELERATING RTL MODELING USING
META-TRACING JIT VMS

This chapter explores the use of meta-tracing JIT VMs to accelerate register-transfer-level

(RTL) hardware simulation methodologies. There has been recent interest in hardware design using

domain-specific languages (DSL) embedded in modern high-level languages such as Python. Using

an embedded DSL allows taking advantage of the productivity features of the host languages for

advanced parameterization, testing, and mixed-level modeling [LZB14]. While productive, this

approach can suffer from poor performance, even if using JIT VMs. To highlight how meta-tracing

JITs can address performance issues, we introduce Mamba, a JIT-aware hardware generation and

simulation framework (HGSF), and HGSF-aware JIT techniques. Combined, these techniques allow

us to reach the performance of commercial Verilog simulators.

Mamba has been created in collaboration with Shunning Jiang [JIB18], and I have co-led the

JIT optimizations to make Mamba high-performance. In addition, this chapter has been included to

highlight that meta-tracing JIT technology can be promising for RTL simulation in addition to FL

and CL models.

5.1 Introduction

With the rising importance of domain-specific hardware and increasing complexity of hardware

design with the latest process technologies, there has been an influx of interest in using high-level

general-purpose programming languages for hardware design. To complement, and sometimes

completely replace, lower level register-transfer level (RTL) hardware description languages (HDLs)

(e.g., Verilog and VHDL), hardware generation frameworks (HGFs) have been gaining traction.

HGFs make use of general-purpose language features to improve the productivity in hardware

design and reduce boilerplate and generate HDL descriptions of the hardware to be used by the

traditional simulation or synthesis tools.

There has been a wide array of approaches in implementing HGFs starting with hardware pre-

processing frameworks, where the high-level language is used as a preprocessor language alongside

the HDL (e.g., Scheme mixed with Verilog in Verischemelog [JB99], Perl mixed with Verilog

in Genesis2 [SAW

+
10]), and hardware generation-only frameworks, where the parameterization,
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static elaboration, test bench generations, and behavioral modeling are unified in a high-level host

language (e.g., Haskell in Lava [BCSS98], standard ML in HML [LL00], Scala in Chisel [BVR

+
12],

Python in Stratus [BDM

+
07], PHDL [Mas07]). While these frameworks are promising, they lack

infrastructure to simulate hardware directly, and rely on converting the hardware description to HDL

and use HDL simulation tools. This has the drawback of potentially long modify-translate-simulate

development cycle, and a semantic gap between the simulation and the hardware description.

More recently, the addition of simulation capability directly at the high-level language to HGFs

give rise to hardware generation and simulation frameworks (HGSFs) manage to address these

pitfalls (e.g., Java in JHDL [BH98], Haskell in ClaSH [BKK

+
10], Python in MyHDL [Dec04],

PyRTL [CTD

+
17], Migen [mig], PyHDL [HMLT03]). In particular, PyMTL showed the promise

of productively using a Python-based embedded DSL for hardware generation and simulation for

functional-, cycle-, and register-transfer-level modeling [LZB14].

While it can yield productivity benefits, hardware simulation directly in the host high-level

language tends to be slow. This is even more pronounced when the host language is a dynamic

language such as Python. While PyMTL took advantage of the general-purpose meta-tracing JIT of

PyPy, that approach still resulted in more than two orders of magnitude slowdown compared to fast

Verilog simulation [LZB14]. In this chapter, we explore additional meta-tracing JIT techniques to

address this performance gap. In particular: (1) we describe five JIT-aware HGSF techniques (static

scheduling, schedule unrolling, heuristic topological sort, trace breaking, and block consolidation);

(2) we describe two HGSF-aware JIT techniques (support for performance-critical data types and

huge loops); and (3) we introduce Mamba which uses these techniques to match the performance

of commercial HDL simulators while maintaining the productivity benefits of using a single host

language for parameterization, static elaboration, test bench generation, behavioral modeling, and

simulation.

5.2 The Mamba HGSF

Like earlier versions of PyMTL, Mamba supports behavioral modeling using concurrent

structural composition, positive-edge-triggered update blocks, and combinational update blocks.

Mamba’s syntax is similar in spirit to PyMTL. Figure 5.1 shows an example component with

combinational update blocks that use the @s.update decorator. Each of the combinational update
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1 class ExampleComponent( RTLComponent ):
2

3 def __init__( s ):
4 s.a = Reg( Bits1 )
5 s.b = Reg( Bits1 )
6 s.c = Reg( Bits1 )
7 s.d = Reg( Bits1 )
8

9 @s.update
10 def update_a():
11 if s.b.out: s.a.in_ = ... # A'
12 else: s.a.in_ = ... # A
13

14 @s.update
15 def update_b():
16 if s.a.out: s.b.in_ = ... # B'
17 elif s.c.out: s.b.in_ = ... # B''
18 else: s.b.in_ = ... # B
19

20 @s.update
21 def update_c():
22 s.c.in_ = ...
23

24 @s.update
25 def update_d():
26 s.d.in_ = ...
27

Figure 5.1: Example PyMTL/Mamba Component – Components consist of update blocks that use the @s.update
decorator. Mamba finds a valid static schedule that respects the dependencies between the components. The update

blocks in this particular example do not have any dependencies between them, so any schedule is valid.

blocks define the signal value to the inputs to four 1-bit registers: a, b, c, and d. Mamba also

leverages Python’s built-in reflection features, particularly abstract-syntax-tree (AST) self-parsing,

to determine which variables are read or written in an update block. Sensitivity information is

constructed based on readers/writers of the same variable in different blocks.

Table 5.1 includes results for an iterative divider and a simple single- and multi-core RISC-V

design described in more detail in Section 5.3. In the rest of this section, we describe each technique

in more detail and discuss various implementation trade-offs involved with that technique.

5.2.1 JIT-Aware HGSF

As a starting point, we implemented event-driven simulation in Mamba using a very similar

technique to PyMTL. Figure 5.2 shows the schedule choices that affect the performance. Like
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1 def sim_loop():
2 while not model.done():
3 model.tick()
4 ncycles += 1
5

6 def tick_event():
7 q = set([update_a, update_b, update_c, update_d])
8 while q:
9 update = q.pop()

10 update()
11 # Add back all combinational update blocks to q whose sensitivity
12 # lists are triggered after calling update().
13 q.update( get_sensitivity_triggered_blocks() )
14

15 def tick_static():
16 # Statically schedule A->B->C->D that respects dependencies.
17 for update in [update_a, update_b, update_c, update_d]:
18 update()
19

20 def tick_static_unroll():
21 # Unroll static schedule A->B->C->D.
22 update_a()
23 update_b()
24 update_c()
25 update_d()
26

27 def tick_static_unroll_toposort():
28 # Prioritize non-branchy combinational update blocks first C->D->A->B.
29 update_c()
30 update_d()
31 update_a()
32 update_b()
33

34 def tick_static_unroll_toposort_break():
35 # Create meta-update blocks that limit branchiness C->D->A.
36 def metablock_1():
37 update_c()
38 update_d()
39 update_a()
40 # Call the combinational update (and meta-update) blocks ( C->D->A )->B.
41 metablock_1()
42 # Use advanced application-level JIT hint to stop tracing between
43 # meta-update blocks.
44 pypyjit.dont_trace_here( ... )
45 update_b()

Figure 5.2: Mamba Combinational Update Block Schedules – sim_loop is the simulation loop that iterates every

cycle and model.tick() calls one of the functions with the corresponding combinational update block scheduling

strategies for the example in Figure 5.1: tick_event = event-driven scheduling, tick_static = static scheduling,

tick_static_unroll = unrolled static scheduling, tick_static_unroll_toposort = unrolled static scheduling

with heuristic topological sort, tick_static_unroll_toposort_break = unrolled static scheduling with heuristic

topological sort and trace breaking.
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Figure 5.3: Meta-Traces of One Simulated Cycle – (a) Event driven and static scheduling; (b) schedule unrolling;

(c) heuristic topological sort; (d) trace breaking. A,B,C,D = traces of update blocks; red dots = guards that have bridges

compiled from (connected by dashed arrows); A’,B’,B” = conditional paths in update blocks that result in bridges;

4X,3X,2X = how many times the jump occurs in a simulated cycle; solid arrows = entry from and exit to the cycle loop.

Technique Divider 1-Core 32-core

Event-Driven 24K CPS 6.6K CPS 65 CPS

JIT-Aware HGSF
+ Static Scheduling 13⇥ 2.6⇥ 1.1⇥
+ Schedule Unrolling 16⇥ 24⇥ 0.2⇥
+ Heuristic Toposort 18⇥ 26⇥ 0.3⇥
+ Trace Breaking 19⇥ 34⇥ 1.5⇥
+ Consolidation 27⇥ 34⇥ 42⇥

HGSF-Aware JIT
+ RPython Constructs 96⇥ 48⇥ 61⇥
+ Support Huge Loops 96⇥ 49⇥ 67⇥

Table 5.1: Mamba Performance – The baseline is event-driven simulation in Mamba. Each row adds a new technique

upon all previous ones. All results are with PyPy. CPS = simulated cycles per second.

PyMTL, we use two nested loops: an outer loop for simulated cycles (lines 1–4), and an inner loop

over an event queue of combinational update blocks. The tick_event function (lines 6–13) shows

a simplified implementation of the event-driven schedule. The event queue, q, is implemented

using a Python set data structure. The schedule loop iterates until q is empty. In each iteration,

one item is removed from q and its combinational update block called. The framework also keeps

track of combinational dependency sensitivity lists for each combinational update block. If any of
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these values that are in the sensitivity lists change, then the corresponding update blocks would be

inserted back into q at the end of the iteration.

Table 5.1 shows the performance of event-driven Mamba simulation executing on a tracing-JIT

VM. Because each iteration of the inner loop is a different update block, the tracing JIT compiles

a different trace for each of these update blocks. The tracing JIT will then insert a guard at the

beginning of each trace to check if that trace is compiled for the called update block. Failing that

guard would cause a jump to the next bridge and check the guard there. Figure 5.3(a) illustrates

this scenario using a cartoon representation of traces, guards, and bridges. Each trace with a

different color and letter represents a trace from a different update block. The letters A, B, C, and

D correspond to the update blocks update_a, update_b etc. in Figure 5.1. The letters A’, B’,

and B” correspond to different control flow paths within the update blocks (lines 11, 16, and 17

respectively). Unfortunately, in a tracing JIT, these guards create a pathological chain of bridges for

the inner loop. Executing the n-th compiled update block will result in failing the first n�1 guards.

In other words, the number of guard failures in an entire simulated cycle scales quadratically with

the total number of update blocks, which becomes a scaling bottleneck. PyPy currently does not

have a mechanism to more efficiently do function dispatching (e.g., using switch/case). Furthermore,

with smaller traces, the escape analysis in the compiler would not be able to find as many object

dereferences and allocations that can be optimized away. Finally, enqueuing dependent blocks only

when a signal’s value changes requires an extra data-dependent check after every assignment. So

while event-driven simulation can be efficient when most signals are stable, it can also create a

number of challenges for tracing JITs. The JIT-aware HGSF techniques described in this section

help mitigate many of these challenges.

Static Scheduling – Instead of event-driven simulation, Mamba statically schedules update

blocks. While static scheduling has been shown to improve the performance of C++-based sim-

ulation frameworks [PMT04, GTBS13], we argue that static scheduling is particularly important

in HGSFs that run on tracing JITs for two reasons: (1) static scheduling avoids bridges due to

data-dependent checks on every signal assignment; and (2) static scheduling paves the way for using

additional techniques to increase the length of each trace. The Mamba execution semantics require

each update block to be executed exactly once in each cycle. This enables a static fixed-order linear

schedule to be generated at elaboration time. We leverage the sensitivity information to schedule

the update blocks correctly: an update block that writes x should be scheduled before all blocks
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that read x. We use a topological sort to serialize the dependency graph into a total order of blocks.

The topological sorting can succeed only if the directed graph is acyclic (DAG). Thus designers

must not create inter-dependencies between combinational blocks. Note that an inter-dependency

does not always imply a combinational loop; two different variables can be read and written in two

blocks. In the example component in Figure 5.1, there are no combinational dependencies, so any

ordering of the update blocks is valid.

In Figure 5.2, the tick_static function (lines 15–18) shows an example static schedule of

the example component. The inner loop simply iterates over the static schedule. Note that this

does not change the meta-trace patterns in Figure 5.3(a); this simply changes the way in which

the corresponding update blocks are updated. Table 5.1 shows that this approach improves the

performance by 1.1–13⇥ over event-driven simulation. One drawback of static scheduling is that all

update blocks are executed regardless of activity. In event-driven scheduling, if the combinational

update block does not have the signals in its sensitivity list change, it will not be called. This enables

higher simulation speeds using event-driven scheduling for hardware that is often idle. For example,

the performance difference between a greatest common divisor unit which is active 10% vs. 100%

of the time in event-driven PyMTL is almost 7⇥, while the same performance gap is only 1.5⇥ in

Mamba due to static scheduling.

Schedule Unrolling – Static scheduling makes it possible to eliminate the pathological chain-

of-bridges pattern in the inner loop by unrolling this loop into a sequence of update block calls.

The tick_static_unroll function in Figure 5.2 (lines 20–25) shows how unrolling might be

implemented. To unroll the schedule, the Mamba framework generates Python code with unrolled

update block calls, and executes this generated code. Being able to programmatically generate code

on the fly at the application level and execute this with high efficiency using JIT is a testament to

the flexibility of dynamic languages. Table 5.1 shows that this improves performance by 1.2–9⇥

compared to static scheduling without inner-loop unrolling for the divider and the 1-core design.

Figure 5.3(b) illustrates how static scheduling and schedule unrolling get rid of the chain-of-bridges

pattern but increase the overall trace length. As each update block body is unrolled and inlined, the

branches in these update blocks cause a separate trace to be compiled. Furthermore, in each of the

original trace and bridges, subsequent branches may also cause additional bridges to be compiled.

The branch in line 11 in Figure 5.1 creates two traces, A and A’. As update_b is also unrolled, its

two branches in lines 16 and 17 cause two additional branches for each existing trace. Because
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of this, update_c and update_d, despite neither of them containing any branches, are compiled

6 times. These redundant compilations hurt the memory usage, instruction cache hit rates, and

increase the compilation and optimization overhead.

Heuristic Topological Sort – Unfortunately, schedule unrolling can create an exponential

number of bridges due to data-dependent control flow within each update block. Every code

path permutation due to control flow in update blocks (A/A’ and B/B’/B” in Figure 5.3(b)) can

create a new bridge. In other words, schedule unrolling introduces a new pathological pattern

that can lead to serious performance degradation in larger designs (see 32-core in Table 5.1). To

address this problem, we observe that there are multiple valid topological sorts for any given

DAG, and each ordering can produce different guard/bridge behavior in our scenario. For exam-

ple, tick_static_unroll_toposort in Figure 5.2 (lines 27–32) and Figure 5.3(c) illustrate an

ordering with fewer guards and bridges (and a smaller instruction-cache footprint) compared to

Figure 5.3(b). We use a heuristic to schedule update blocks with potentially more guards as late as

possible. The stack used in the topological sort is replaced with a priority queue where each update

block’s priority is the number of if/elif statements in that block counted using AST self-parsing.

This approach can reduce the number of redundantly compiled update blocks. update_c and

update_d are now only compiled once, but update_b is still compiled twice. Table 5.1 shows that

this can improve the performance by 10–30% over basic schedule unrolling.

Trace Breaking – A large number of guards and bridges is still possible in more complex

designs. To further control the number of guards and bridges, we use Python-level JIT hints

to break long traces into multiple smaller traces. These application-level hints are provided by

PyPy to control the JIT compilation process, and they can be used to prevent tracing in certain

parts of the application. During the topological sort, we pack update blocks into a meta-update

block. A meta-update block is a sequence of one or more update blocks that do not include any

if/elif statements followed by a final update block which does include an if/elif statement. A

meta-update block ends with a trace-breaking hint. This technique essentially limits the number of

if/elif statements within any given trace. The function tick_static_unroll_toposort_break

in Figure 5.2 (lines 34–45) shows how meta-update blocks are formed and the application-level JIT

hint to force a trace break. As Figure 5.3(d) shows, this approach can entirely eliminate redundant

compilations. Table 5.1 shows this technique has a more significant impact on larger designs, e.g.,

improving performance by 5⇥ for the 32-core design over heuristic topological sort.
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Block Consolidation – Despite the techniques described above, the size of JIT-compiled code

scales with the design size due to the nature of JIT compilation: the same update block from

different instances is JIT-compiled individually. This problem is less prominent in static languages

because different instances of the same module will likely reuse the same compiled assembly code.

We observe that modular replication and composition is very common in RTL design (e.g., a chip

with 16 homogeneous cores is more common than 16 disparate cores). Block consolidation is a new

technique that deduplicates different instances of an update block in a JIT trace. We modify the

topological sort to identify different instances of the same update block and to then schedule these

instances together. We use a hash of the update block source code to identify when they are the same.

We group these update blocks into a new nested loop that iterates over these different instances by

calling the same update block with different parameters in each iteration. Table 5.1 shows that large

designs can significantly benefit from block consolidation, e.g., improving performance by 28⇥ for

the 32-core design over trace breaking.

5.2.2 HGSF-Aware JIT

The previous section described techniques to improve the performance of an HGSF when

using a general-purpose meta-tracing JIT. In this section, we describe two techniques to improve

performance by making the JIT specialized for the HGSF.

Meta-Tracing the Performance-Critical Constructs – Although the PyPy JIT compiler can

run arbitrary Python code, native Python constructs may not be the best fit for HGSFs. For example,

fixed-bit-width data types are used extensively in HGSFs, but they are not natively supported by

Python. HGSF designers must emulate slicing and two’s complement arithmetic using integer

arithmetic. This increases warm-up time, requires redundant arithmetic operations, and creates

excessive bridges due to dynamic type casting. We implement a fixed-bit-width data type in RPython

as a proof of concept. Other performance-critical constructs (e.g., byte-addressable memory) can

also be implemented in RPython. The key is the meta-tracing approach that enables writing Python-

like code exactly once. We exploit the invariant that the bit-width of a signal does not change during

simulation; RPython enables annotating the bitwidth as immutable. We are also able to directly

manipulate the underlying integer arrays at the RPython level. These specializations significantly

eliminate potential bridges. Table 5.1 shows that this technique improves the performance by an

additional 1.5–3.5⇥ on top of the JIT-aware HGSF techniques.
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Support for Huge Loops – The techniques described in Section 5.2.1 improve performance

but also often increase the total size of all traces. PyPy’s VMProf tool is only useful for identifying

Python-level bottlenecks, so we use the Linux perf tool to identify the microarchitectural impli-

cations of these larger instruction cache footprints. Experiments show that for the 8-core (1-core)

simulation in Section 5.3, 3% (0.2%) of all instruction fetches incur an instruction TLB load, among

which 22% (2.6%) are iTLB misses. The need for larger TLB reach motivates us to modify PyPy to

allocate 2 MB huge pages for traces and to fall back to 4 KB pages if Linux’s huge-page support is

unavailable. As a proof of concept, the removal of excessive iTLB accesses (confirmed by perf )

improved the performance of the 32-core design by 10% as shown in Table 5.1.

5.3 Case Study: RISC-V Multicore

We present an apples-to-apples simulation performance comparison of 1–32 RV32IM [AP14]

five-stage cores implemented in-house in Verilog, PyMTL, and Mamba using a structural datapath

and pipelined control unit. The cores run a parallel matrix multiplication application kernel using

a lightweight parallel runtime. We simulate Verilog with a fast commercial verilog simulator,

CVS

1

, Icarus [ica], and Verilator [ver14], and we use PyPy for PyMTL, PyMTL-CSim, and Mamba.

The multi-core does not include caches nor an interconnection network and is simulated with a

behavioral test memory implemented in Verilog for CVS and Icarus, C++ for Verilator, and Python

for PyMTL and Mamba. ASIC synthesis results show that each core can be implemented in around

10 K gates. This design is sufficient for exploring the scalability of various hardware development

frameworks, and more complex system-on-chip designs are left as future work. The simulation

platform includes an Intel E3-1240 v5 processor and 32 GB DDR4-2400 memory running Ubuntu

14.04 Server, gcc-4.8.5, PyPy-5.8, Verilator-3.876, and Icarus-11.0.

Compilation/Warmup – Figure 5.4(a) and (b) reflect the iterative development cycle for simu-

lating a specific number of instructions. This includes all overheads: CVS, Icarus, Verilator, and

PyMTL-CSim compile times; PyMTL and Mamba elaboration times; and PyMTL and Mamba JIT

warmup times. Intuitively, the leftmost points (i.e., short simulations) are affected the most by these

overheads. Overall, CVS and Icarus have relatively low compilation overhead (1–2 s for 1-core, 3 s

for 32-core), whereas Verilator has larger compilation overhead (4–5 s for 1-core, 130 s for 32-core).

1

Tool vendor anonymized due to license agreement.
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(a) Simulating 1-Core (b) Simulating 32-Core

(c) Steady State Performance

Figure 5.4: Performance of Simulating RISC-V Multicore – Each point in (a) and (b) is the average simulated cycle

per second (CPS) taking compilation overhead into account; (c) captures the scalable performance: steady state CPS

multiplied by number of simulated cores.

PyMTL and Mamba have short elaboration times for one core (<1s) but longer elaboration times

for 32 cores (6-8s). The JIT warmup overhead is difficult to quantify; both PyMTL and Mamba
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warm up within at most 10

5

simulated cycles, and the absolute warm-up time is shorter in Mamba

compared to PyMTL.

Performance – When simulating a 1-core system, Mamba executes 332K CPS which is slightly

faster than CVS and significantly faster than the other frameworks. Mamba’s 1-core performance is

equivalent to 148K committed instructions per second. When simulating a 32-core system Mamba

is 2.1⇥ slower than CVS but again significantly faster than the other frameworks. Overall these

results demonstrate that Mamba nearly matches the performance of CVS for both small and large

designs for both short and long simulations. While Verilator can achieve impressive performance for

long simulations, it can be difficult to amortize Verilator’s long compile times for short simulations

potentially precluding using Verilator in agile test-driven development.

Scalability – Figure 5.4(c) summarizes the steady-state performance of all frameworks with a

gradually increasing number of simulated cores. We multiply the simulated cycles per second by

the number of cores to reflect the simulation performance scaling with the size of design. A flat line

indicates perfect scalability (i.e., a 2⇥ larger design results in a 2⇥ reduction in CPS). CVS and

Icarus have good scalability, whereas Verilator appears to be less scalable. The source code size

generated by Verilator scales up linearly with the number of cores, potentially harming the quality

of C++ compilation. Mamba is faster than CVS at 1-core, and only 2⇥ slower at 32-core. PyMTL

scales better than PyMTL-CSim and Mamba, but its absolute performance is relatively low.

5.4 Conclusion

We have presented Mamba, JIT-aware HGSF and HGSF-aware JIT techniques that significantly

improve the performance of modern RTL design methodologies that take advantage of embedded

DSLs in dynamic languages. The Mamba techniques will be incorporated into the next generation of

PyMTL. Mamba is able to reach the performance of CVS, and come within an order of magnitude

of Verilator for long-running simulations. Even more impressive is Mamba’s performance for

shorter running simulations as the JIT is able to warm up much quicker than Verilator can translate

models to C++. Mamba shows that meta-tracing JITs can help accelerate RTL simulations while

also allowing high-productivity design experience as highlighed in PyMTL.
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PART II

BUILDING HARDWARE ACCELERATORS FOR
META-TRACING JIT VMS

The second part of the thesis focuses on developing hardware specialization to accelerate meta-

tracing JIT VMs. Meta-tracing JIT virtual machines for dynamic languages contain many different

components including an interpreter, library components, garbage collector, a meta-interpreter to

generate the trace, compiler optimization passes, and a backend that generates the JIT-compiled code.

Furthermore, the RPython framework contains many different abstraction layers and languages,

from interpreter code that is written in Python to the translation toolchain that converts the VM

to C, and the JIT-compiled code that is generated on the fly. As a result, it is non-obvious which

components are critical to the performance of dynamic languages executing on a meta-tracing JIT

VM. Chapter 6 performs a comprehensive cross-layer workload characterization of meta-tracing JIT

VMs, looking at application-, framework-, interpreter-, JIT-, and microarchitecture-level quantitative

analysis of the VM components. Chapter 7 explores further hardware acceleration ideas specifically

in the JIT-compiled code. I identify a promising value pattern with respect to object dereferences.

Object dereferences are a common occurrence due to both application patterns typically used in

dynamic languages and the way meta-tracing automatically generates JIT-compiled code using the

interpreter. I quantify object dereference locality in meta-tracing JIT VMs and propose a promising

hardware specialization approach called skippable sub-traces to reduce dynamic instruction count.
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CHAPTER 6

META-TRACING WORKLOAD CHARACTERIZATION

Meta-tracing JIT VMs contain many different components and it is non-obvious which compo-

nents are critical to the performance. Before proposing a new hardware acceleration solution, it

is important to know which components can have bottlenecks. This chapter presents a thorough

cross-layer workload characterization of meta-tracing JIT VMs and provides a first attempt in

answering a number of important performance-related questions using data.

6.1 Introduction

Dynamic programming languages are growing in popularity across the computing spectrum

from smartphones (e.g., JavaScript for mobile web clients), to servers (e.g., Node.js, Ruby on Rails),

to supercomputers (e.g., Julia for numerical computing). Table 2.1 shows many of the top-ten

most popular programming languages are now dynamic. Dynamic languages typically include:

lightweight syntax; dynamic typing of variables; managed memory and garbage collection; rich

standard libraries; interactive execution environments; and advanced introspection and reflection

capabilities. The careful use of these features can potentially enable more productive programming.

However, the very features that make dynamic languages popular and productive also result in

lower performance. These languages traditionally use interpreters to implement a virtual machine

that closely aligns with the language semantics, but interpreted code can be orders-of-magnitude

slower than statically compiled code. To address this performance/productivity gap, dynamic

languages are using just-in-time (JIT) optimizing virtual machines (VMs) to apply traditional ahead-

of-time compiler techniques at run-time [BCFR09, BT15, WWW

+
13, WWS

+
12, Höl13, GES

+
09,

spi,jul,v8]. Such JIT optimizations include removing the (bytecode) fetch and decode overhead, gen-

erating type-specialized code for the observed types, (partial) escape analysis [SWM14, BCF

+
11a],

constant propagation, and dead-code elimination. It is well known that developing state-of-the-art

JIT-optimizing VMs is very challenging due to the overall complexity (e.g., the need for profiling,

recording a trace, compiling, deoptimizations on type misspeculation, garbage collection, etc.),

performance requirements (e.g., the JIT optimization process itself must be fast since it is on the

critical path), and development process (e.g., debugging dynamic code generation). With many

programmer-decades of engineering effort, some JIT-optimizing VMs (e.g., Google V8 [Höl13, v8],
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Mozilla SpiderMonkey [spi]) can begin to achieve performance that is within 10⇥ of statically

compiled code.

Unfortunately, many emerging and experimental languages simply cannot afford the effort

required to implement a custom state-of-the-art JIT-optimizing VM. This has motivated work on

meta-JIT optimizing VMs (or “meta-JITs”) which abstract the language definition from the VM

internals such that language implementers need not worry about the complexity typically associated

with JIT optimizations. There are currently two production-ready meta-JITs: the Truffle framework

for rapidly developing method-based JIT-optimizing VMs [WWH

+
17, WWW

+
13, WWS

+
12] and

the RPython framework for rapidly developing trace-based JIT-optimizing VMs [BCFR09, BT15]

(see [MD15] for a detailed comparison of these frameworks). The Truffle framework enables

language implementers to define abstract-syntax-tree- (AST-) based interpreters for their language

and also specify JIT-optimization opportunities to the Graal compiler. Truffle automatically identifies

“hot” target-language methods and then applies the previously specified JIT optimizations along with

aggressive partial evaluation before targeting the HotSpot JVM. The RPython framework enables

language implementers to build AST- or bytecode-based interpreters in a high-level language. An

interpreter communicates to the framework its dispatch loop, target-language loops, and additional

run-time hints. RPython automatically identifies “hot” target-language loops and then generates

a trace, optimizes the trace, and lowers the trace into assembly. Meta-JITs can significantly

reduce the effort involved in building JIT-optimizing VMs, and so it is not surprising that many

language interpreters are now either using or experimenting with meta-JITs (e.g., Python [BCFR09],

Ruby [top15, Sea15, trub], JavaScript [WWS

+
12], R [trua], Racket [BPSTH14], PHP [hip15],

Prolog [BLS10], Smalltalk [BKL

+
08]). To narrow the scope of this work, we focus on the RPython

meta-tracing JIT, and Section 6.2 provides additional background on this framework.

We anticipate the trend towards meta-JITs will continue for new, research, and domain-specific

languages, and this motivates our interest in performing a multi-language workload characterization

of the RPython meta-tracing JIT. Section 6.3 describes our baseline characterization methodology.

One of the key challenges in performing such a characterization is the many layers of abstraction

used in a meta-tracing JIT including: the target dynamic programming language; the target language

AST or bytecode; the high-level language used to implement the interpreter; the intermediate

representation (IR) used in the meta-trace; and the final assembly instructions. In Section 6.4,

we describe a new cross-layer characterization methodology that enables inserting cross-layer
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annotations at a higher layer, and then intercepting these annotations at a lower layer. In Section 6.5,

we use this new cross-layer methodology to characterize a diverse selection of benchmarks written

in Python and Racket at the application, framework, interpreter, JIT-IR, and microarchitecture level.

In Section 6.6, we use this characterization data to answer the following nine key questions:

1. Can meta-tracing JITs significantly improve the performance of multiple dynamic languages?

2. Does generating and optimizing traces in a meta-tracing JIT add significant overhead?

3. Does deoptimization in a meta-tracing JIT consume a significant fraction of the total execution

time?

4. Does garbage collection in a meta-tracing JIT consume a significant fraction of the total

execution time?

5. Is all JIT-compiled code equally used in a meta-tracing JIT?

6. Does a meta-tracing JIT need to spend most of its time in the JIT-compiled code to achieve

good performance?

7. What fraction of the time in the JIT-compiled code is overhead due to the meta-tracing JIT?

8. What is the microarchitectural behavior (e.g., instruction throughput, branch prediction) of

JIT-compiled code?

9. Why are meta-tracing JITs for dynamic programming languages still slower than statically

compiled languages?

6.2 Background on Meta-Tracing and RPython

This section supplements the background provided in Chapter 2 from the perspective of workload

characterization. The RPython toolchain uses a novel approach where the tracing JIT compiler is

actually a meta-tracing JIT compiler, meaning that the JIT does not directly trace the application,

but instead traces the interpreter interpreting the application. The interpreter is written in RPython,

a statically typed subset of Python. The interpreter uses a dispatch loop to continuously fetch a

quantum of execution (e.g., bytecode) and dispatch to a corresponding execution function. The

RPython framework has its own standard library (similar to Python’s standard library) and an API

so that the language implementer can inform the framework of the interpreter’s program counter,
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Figure 6.1: RPython Framework – Dashed lines indicate ahead-of-time operations; solid lines indicate execution-time

operations. The language each block is written in is indicated after the colon. Dark blue blocks are where we can insert

cross-layer annotations, and light blue blocks are where we can intercept cross-layer annotations.

dispatch loop, and application-level loops. The framework also supports hints to indicate which

variables can be treated as constants in the trace, which interpreter-level functions are pure, and

when type-specialized versions of functions should be generated.

Since RPython is a proper subset of Python, interpreters written in RPython can be executed using

a standard Python interpreter. However, for good performance, these interpreters are automatically

translated into C using the RPython translation toolchain (see dashed lines in Figure 6.1). At run-

time, the application (e.g., Python code) is compiled into bytecode, and the bytecode executes on

the C-based interpreter (see solid lines in Figure 6.1). When the interpreter reaches an application-

level loop, the framework increments an internal per-loop counter. Once this counter exceeds a

threshold, the execution is transfered to a meta-interpreter. The meta-interpreter builds the meta-

trace by recording the operations performed by the interpreter until the application-level loop is

completed. The trace is then passed on to a JIT optimizer and assembler before initiating native

execution. A meta-trace includes guards that ensure the dynamic conditions under which the

meta-trace was optimized still hold (e.g., the types of application-level variables remain constant).
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If a guard fails or if the optimized loop is finished, the JIT returns control back to the C-based

interpreter using a process called deoptimization. Deoptimization transforms the intermediate state

in a JIT-compiled trace to the precise state required to start execution of the interpreter. If a guard

fails often, it is converted into a bridge, which is a direct branch from one JIT-compiled trace to

another, separately JIT-compiled trace. More on the RPython toolchain can be found in Chapter 2

and [SB12, Bol12, AACM07].

Meta-tracing JITs have some important differences compared to traditional tracing JITs. Tracing

JITs trace the execution of the target program directly (e.g., recording the trace of executed

bytecodes), while meta-tracing JITs trace the execution of the interpreter as it executes the target

program. These extra levels of abstraction can potentially result in increased overhead during tracing,

deoptimization, garbage collection, and JIT-compiled execution. Also note that the meta-interpreter

opportunistically inlines interpreter-level function calls. However, if these functions contain loops

with data-dependent bounds, they are excluded from the trace to avoid numerous guard failures.

These functions are ahead-of-time- (AOT-) compiled (and so not dynamically optimized) and then

called from within the JIT-compiled code. While traditional tracing JITs may also include calls to

the JIT framework from within JIT-compiled code, there is the potential for many more calls in a

meta-tracing JIT because such calls are particularly easy to use in RPython.

6.3 Baseline Characterization Methodology

To characterize meta-tracing JITs across multiple languages, we will study Python (a well-

known, general-purpose programming language) and Racket (a general-purpose programming

language in the Lisp-Scheme family). As a baseline, we will use the “reference” interpreters for

both Python (i.e., CPython) and Racket. Technically, Racket does not use an interpreter but instead

uses a custom JIT-optimizing VM. Both Python and Racket also have highly optimized meta-tracing

JITs implemented using the RPython framework. For Python, we will use the very popular PyPy

meta-tracing JIT [BCFR09] and for Racket, we will use the Pycket meta-tracing JIT [BPSTH14].

For each language, we will also explore an interpreter generated from the RPython translation

toolchain but without the meta-tracing JIT enabled as another example of a traditional interpreter.

Finally, we also include results for C/C++ implementations of some benchmarks to provide a

reference for statically compiled languages.
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We use benchmarks from two suites: the PyPy Benchmark Suite [pypb] and the Computer

Languages Benchmarks Game (CLBG) [Gou]. We use the PyPy Benchmark Suite because it is

widely used for benchmarking Python programs [BCF

+
11a, SB12]. We use the CLBG to compare

the performance of different languages and interpreters on highly optimized implementations of

the same benchmarks. The benchmarks in the PyPy Benchmark Suite are single-threaded and

single-process, whereas many implementations in the CLBG make use of multi-programming and

multi-threading. CPython and the RPython framework currently make use of a Global Interpreter

Lock (GIL) [Bea10], preventing parallelism in multi-threaded programs. Because the focus of the

chapter is on the performance characterization of meta-tracing JITs, and not of GILs and parallelism,

we restrict all benchmarks, including many parallel implementations in the CLBG, to use a single

hardware thread. Because CLBG provides multiple implementations of the same benchmark and

language, we pick the fastest implementation for each benchmark and language combination. Due

to some missing features of the Racket language in Pycket, a number of the CLBG benchmarks did

not execute correctly.

When characterizing at the JIT IR level, we make use of the PyPy Log facility, which is part

of the RPython framework. The PyPy Log contains information about each JIT-compiled trace

including the bytecode operations, JIT IR nodes, and assembly instructions contained in each trace,

along with the number of times each trace was executed. Enabling the PyPy Log slightly degrades

performance (<10%), so we disabled this feature when comparing the overall execution time of the

interpreters.

We use two mechanisms to collect microarchitectural measurements through performance

counters. The first uses the performance application programming interface (PAPI) to record perfor-

mance counters on certain cross-layer annotations [MBDH99]. We implemented this mechanism in

the RPython-based interpreters. To compare microarchitectural characteristics of meta-tracing to

other interpreters and statically compiled code, we use Linux’s perf tool to periodically read the

performance counters.

6.4 Cross-Layer Characterization Methodology

The baseline characterization methodology described in Section 6.3 can enable initial analysis,

but the many layers involved in a meta-tracing JIT make it difficult to gain insight into cross-layer
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interactions between: the target dynamic programming language; the target language AST or

bytecode; the interpreter including the RPython standard library; the JIT IR used in the meta-trace;

and the final assembly instructions. In this section, we describe a new cross-layer characterization

methodology based on using cross-layer annotations.

Cross-layer annotations are a unified mechanism to annotate events of interest at one level of

meta-tracing execution, and collect these annotations at different level. For instance, a Python

application might annotate when a particular function is called, the Python interpreter might annotate

every time the dispatch loop is executed, the RPython framework might annotate when loops are

being traced or when garbage collection occurs, and generated machine code from the JIT compiler

might annotate when a particular assembly sequence corresponding to a particular IR node is being

executed. Figure 6.1 shows the blocks where the cross-layer annotations can be inserted in dark

blue.

These annotations can be collected at different levels. At the assembly instruction level, annota-

tions can be observed by using a carefully selected instruction which does not change the program

behavior but also includes a tag to indicate the corresponding annotation. Our methodology uses the

nop instruction in the x86 ISA. Although the nop instruction supports the usual addressing modes

of the x86 ISA, the architecture only considers the opcode and ignores the corresponding address.

Our methodology uses a unique address to serve as the tag for each cross-layer annotation. Other

ISAs can use other instructions or sequences of instructions to achieve a similar effect (e.g., add

r1, r1, #145; sub r1, r1, #145 in ARM). The execution target that executes these machine

instructions (e.g., a dynamic instrumentation tool, an ISA simulator, or a soft-core processor on an

FPGA) can perform some action when one of these cross-layer annotations is executed. Cross-layer

annotations can also be collected at higher levels. For example, the timestamps or microarchitectural

measurements can be logged to a file every time a cross-layer annotation is called. Figure 6.1 shows

the blocks where the cross-layer annotations can be collected in light blue.

In this chapter, we have modified the RPython framework and inserted cross-layer annotations

at various events of interest in the framework (e.g., when a minor garbage collection starts and

ends, when tracing starts and ends, when execution starts on the JIT-compiled code, etc.). This

allows us to know exactly what the framework is doing at a given point of time. We can use this

information to get detailed breakdowns of time spent in different parts of the framework. We also

added cross-layer annotations at the interpreter level at the beginning of the dispatch loop. This
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allows us to have an independent measure of “work” (e.g., number of bytecodes in PyPy) regardless

of whether the interpreter is being used (if the JIT is off or has not warmed up yet), the tracing

interpreter is being used, or the JIT-compiled code is being executed. This enables precisely finding

the JIT warmup break-even point. Finding the break-even point using other techniques is likely

very difficult because counting the number of bytecodes executed in the JIT would likely introduce

significant performance overheads that would skew the results. We added application-level APIs to

our interpreters so that cross-layer hints can also be emitted from the application level. Finally, we

can also emit cross-layer annotations when each JIT IR node is lowered to assembly instructions.

This enables tracking the connection between traces, JIT IR nodes, and assembly instructions. Each

cross-layer annotation can be enabled/disabled from the command line.

We use the Pin dynamic binary instrumentation tool [LCM

+
05] as the primary mechanism for

intercepting cross-layer annotations. We have developed a custom PinTool that detects the nop

instructions and can track information on the phase, the bytecode execution rate, AOT-compiled

functions, and JIT IR nodes.

6.5 Cross-Layer Workload Characterization

This section presents cross-layer workload characterization studies that will help us answer the

key questions regarding meta-tracing JITs.

6.5.1 Application-Level Characterization

We first compare the overall application performance of dynamic languages running on different

VMs. Table 6.1 compares the application performance of the PyPy Benchmark Suite using CPython,

PyPy without a meta-tracing JIT, and PyPy with a meta-tracing JIT. We can see that CPython is

consistently faster than PyPy with its meta-tracing JIT disabled for almost all of the benchmarks,

usually by 2⇥ or more. The first reason for this is because CPython is written directly in C, whereas

PyPy is written in a high-level language (RPython) translated to C. The other reason is because

CPython is designed to only be an interpreter, and thus it includes some modest interpreter-focused

optimizations. The performance benefit of PyPy with the meta-tracing JIT over CPython is much

more varied and usually much higher: from 0.7–51⇥.
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Figure 6.2: RPython Framework Breakdown – Shows the breakdown of time spend in various components of the

RPython framework.

To compare different languages, Table 6.2 shows the overall execution time of the CLBG

benchmarks. Similar trends hold here between PyPy with the meta-tracing JIT enabled and CPython,

except for a few cases (chameneosredux, pidigits, revcomp) where CPython performs much

better. These Python programs use external libraries, which are often written in C using an API that

exposes CPython implementation details. There is ongoing work on a PyPy C-compatibility layer

which could enable similar performance benefits. We see that the other RPython-based meta-tracing

JIT, Pycket, has similar performance as Racket with a range of 0.3–2⇥. This is due to: (1) Pycket is

less mature compared to PyPy; and (2) unlike CPython, Racket uses a custom JIT-optimizing VM.

Racket- and Python-language implementations, even with a meta-tracing JIT, tend to perform very

poorly compared to C and C++.

6.5.2 Framework-Level Characterization: Phases

Tracing JITs typically have different phases inherent to the way they execute and optimize code.

Initially, execution starts in the interpreter phase. When hot loops are detected, these loops are

traced and compiled in the tracing phase. The JIT-compiled code is executed during the JIT phase.

Occasionally, there are calls to AOT-compiled functions in the runtime from JIT-compiled code,

which is the JIT call phase. Finally, there is the GC phase for garbage collection and the blackhole

phase deoptimization (due to the “blackhole interpreter” used to implement deoptimization in

RPython).
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CPython PyPy w/o JIT PyPy with JIT

Benchmark t (s) IPC M t (s) vC IPC M t (s) vC IPC M

richards 0.2 1.65 5.9 0.5 0.5 1.32 6.4 0.004 51.2 1.38 3.5

crypto_pyaes 2 1.94 3.1 4 0.4 1.55 3.2 0.06 30.2 1.62 0.8

chaos 0.3 1.49 5.5 0.7 0.4 1.03 6.7 0.01 27.2 1.31 1.9

telco 0.9 1.24 7.4 2 0.4 0.88 7.3 0.03 27.1 1.11 4.0

spectral-norm 0.3 1.93 3.3 0.9 0.3 1.44 3.6 0.01 25.9 1.90 0.8

django 0.7 1.24 5.7 1 0.5 0.88 6.6 0.04 18.2 1.37 2.5

twisted_iteration 0.09 1.41 4.5 0.4 0.2 0.95 7.1 0.006 15.0 1.27 0.8

spitfire_cstringio 10 1.92 1.4 9 1.1 1.46 3.0 0.9 11.4 2.00 0.5

raytrace-simple 2 1.54 5.4 4 0.5 1.13 5.8 0.2 10.4 1.22 2.7

hexiom2 149 1.88 2.5 442 0.3 1.38 4.2 14 10.1 1.91 1.2

float 0.4 1.62 2.5 0.8 0.5 1.22 4.6 0.05 7.1 1.38 2.9

ai 0.3 1.44 3.7 1 0.3 1.05 4.7 0.04 7.0 1.79 1.6

nbody_modified 0.3 2.06 2.9 0.9 0.3 1.58 3.0 0.04 6.9 1.50 1.1

twisted_pb 0.05 1.12 7.9 0.1 0.4 0.86 7.0 0.007 6.4 0.68 4.1

fannkuch 1 1.70 3.8 2 0.6 1.36 6.5 0.2 5.2 1.59 5.5

genshi_text 0.1 1.29 6.2 0.4 0.3 0.94 7.1 0.02 5.2 1.30 1.8

pyflate-fast 2 1.68 4.4 4 0.5 1.29 5.6 0.4 4.8 1.62 2.4

bm_mako 0.1 1.46 2.3 0.3 0.4 0.89 5.1 0.02 4.8 1.41 2.3

twisted_names 0.008 0.74 13.9 0.02 0.5 0.67 9.5 0.002 4.1 0.51 9.4

json_bench 3 1.54 4.6 31 0.1 1.17 6.2 0.9 3.9 1.91 0.7

genshi_xml 0.2 1.11 7.6 0.8 0.3 0.78 8.6 0.06 3.9 1.09 1.4

bm_chameleon 0.07 1.35 5.4 0.2 0.4 1.05 5.6 0.02 3.5 1.39 2.5

pypy_interp 0.3 1.15 7.0 0.6 0.5 0.89 6.5 0.1 3.3 0.91 6.4

twisted_tcp 0.6 0.68 10.3 1 0.5 0.54 9.2 0.2 3.0 0.48 3.4

html5lib 11 0.93 9.7 27 0.4 0.77 7.0 4 2.5 0.89 4.6

meteor-contest 0.2 1.51 7.0 0.6 0.4 1.32 3.4 0.1 2.4 1.64 3.9

sympy_sum 1 1.25 5.6 5 0.3 0.80 6.6 0.6 2.3 0.99 5.6

spitfire 5 1.82 2.4 12 0.4 1.37 2.7 2 2.1 1.55 1.1

spambayes 0.2 1.59 4.3 0.6 0.4 1.35 4.2 0.1 2.0 0.99 6.4

rietveld 0.6 0.99 9.1 1 0.5 0.76 7.8 0.3 1.8 0.76 8.4

deltablue 0.02 1.74 3.5 0.05 0.4 1.25 4.2 0.01 1.7 0.98 6.1

eparse 0.8 1.35 5.5 1 0.6 0.96 6.3 0.5 1.5 0.77 5.8

sympy_expand 1 1.17 7.1 3 0.4 0.83 6.7 0.8 1.4 0.86 6.4

slowspitfire 0.4 1.86 2.1 1 0.4 1.52 2.2 0.3 1.3 1.39 0.5

sympy_integrate 4 1.30 5.5 15 0.2 0.88 6.3 3 1.2 0.86 6.8

pidigits 12 2.45 0.1 11 1.1 1.83 0.1 10 1.1 1.84 0.1

bm_mdp 10 1.34 8.6 70 0.2 1.19 5.2 10 1.1 1.39 2.1

sympy_str 0.5 1.14 7.7 1 0.4 0.83 6.9 0.7 0.7 0.88 7.2

Average 1.46 5.4 0.5 1.10 5.6 1.7 1.27 3.4

Table 6.1: PyPy Benchmark Suite Performance – Overall execution times ordered by PyPy with JIT speedup over

CPython. vC = speedup compared to CPython. IPC = instructions per cycle. M = branch misses per 1000 instructions.

100



C CPython PyPy Racket Pycket

Benchmark IPC Sdn IPC Sdn IPC Sdn IPC Sdn IPC

binarytrees 2.16 37 1.95 4.5 1.37 5.7 1.80 11 1.26

chameneosredux 1.19 87 1.13 1374 0.86 111 0.99 – –

fannkuchredux 1.16 89 1.85 25 1.43 13 1.97 7.2 1.16

fasta 1.89 8.3 1.93 5.6 1.23 2.0 1.09 2.1 1.09

knucleotide 1.74 15 1.69 8.8 1.65 4.4 2.20 – –

mandelbrot 1.99 115 2.23 29 1.29 9.0 1.52 6.7 1.21

meteor 1.18 78 1.78 30 1.04 12 1.63 31 1.06

nbody 2.23 97 2.16 12 1.33 5.3 1.68 2.8 1.20

pidigits 1.65 1.8 1.48 5.1 0.96 13 0.93 7.4 1.89

regexdna 1.36 3.8 1.78 3.1 1.12 6.7 2.01 – –

revcomp 1.43 4.0 1.96 6.8 1.35 5.1 2.10 4.0 1.21

spectralnorm 1.20 104 1.97 10 1.25 6.4 1.56 4.2 1.16

threadring 1.03 20 0.97 16 0.94 16 0.82 – –

Table 6.2: CLBG Performance – IPC and slowdowns (Sdn) compared to C/C++. Meta-tracing JIT is enabled for

PyPy and Pycket.

Figure 6.3: Framework Phases in Time – Each line indicates which phase the framework currently is in during the

first 10 billion instructions of the best-performing (richards) and worst-performing (sympy_str) benchmarks.

Using cross-layer annotations and a custom PinTool that intercepts them, we can tease apart how

much of the execution time is spent in each of these phases. Figure 6.3 shows the phases for the best-

and worst-performing (compared to CPython) benchmarks. As expected, the framework initially

spends most of its time in the interpreter, tracing, and blackhole phases until the meta-tracing JIT
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warms up, then time in JIT phase dominates. Interestingly, garbage collection is used more heavily

before the JIT phase. This is most likely due to escape analysis in the JIT which removes many

object allocations. Figure 6.2 shows the breakdown of time spent in each phase by benchmark.

For some benchmarks, the JIT and JIT call phases dominate the execution (e.g., ai, json_bench),

while others spend most of their time in the interpreter (e.g., sympy_str). With the exception of

blackhole, every different phase dominates the execution time of at least one benchmark. This

shows that none of these phases can be ignored from an optimization perspective, and aggressive

improvements in one of these phases unfortunately translates to modest improvements of execution

times on average. Figure 6.5 compares the phase breakdown for the meta-tracing JITs on the CLBG

benchmarks. For the most part, different interpreters show similar trends when running the same

program: large usage of GC in binarytrees, large usage of the JIT in fasta and spectralnorm,

heavy use of JIT calls in pidigits, and large warmup overheads in meteor. The main exception

to this is revcomp where PyPy spends most of its time in the interpreter while Pycket is able to

compile and use JIT traces quickly.

Three different parts of a meta-tracing JIT VM execute the application code: the interpreter,

the meta-interpreter as it records a trace of the interpreter, and the JIT-compiled code. However,

the performance between these different components can vary significantly. The cross-layer

characterization methodology allows us to precisely determine the bytecode execution rates across

these three different parts. Figure 6.4 shows the rate for the three components in terms of bytecodes

executed per dynamic x86 instruction. Unsurprisingly, JIT-compiled code is typically more than two

orders of magnitude faster than running the same code on the interpreter. However, as Figure 6.4(a)

shows, there is a very large variation in the JIT performance (notice the log scale). Furthermore,

the best performing benchmarks typically have higher performance in the JIT-compiled regions.

In comparison, the interpreter and meta-interpreter performance is relatively similar across the

benchmarks. Another important observation is that meta-interpreter performs roughly two orders of

magnitude slower than the interpreter. While compilation passes are relatively cheap in meta-tracing

JITs due to linear traces, the meta-tracing part itself can be a bottleneck.

6.5.3 Framework-Level Characterization: JIT Calls

Figures 6.2 and 6.5 show that for many benchmarks, the framework is mostly in the JIT call

phase. These calls to AOT-compiled functions typically happen at a very fine granularity, unlike our
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Figure 6.4: Python Bytecode Execution Rates – Bytecodes executed per dynamic x86 instruction in the (a) JIT-

compiled code, (b) interpreter, and (c) meta-interpreter.

cross-layer methodology, many other measurement methodologies typically lump this phase into

the JIT phase. These calls arise from functions in the interpreter or the meta-tracing framework that

cannot be inlined into the trace (typically because they contain unbounded loops).

To determine which AOT-compiled functions are being called from JIT-compiled meta-traces,

we tracked the target addresses when our PinTool observed a call from JIT-compiled code. Table 6.3

shows the functions that constitute at least 10% of the overall execution time. Note that if these

functions call other functions, the time spent in the called functions is also counted as part of these

entry points. Some of the functions are part of RPython-level type intrinsics which implement the

operations over standard Python types (e.g., lists, strings, dictionaries) used in the interpreter and

framework. Another source is the RPython standard library, which provides a subset of Python’s

standard library for use by the interpreter and framework. There are also external C functions usually

part of the C standard library. In addition, some of these functions are defined by the interpreter

or Python modules. In particular we can see that many benchmarks spend a significant amount of
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Figure 6.5: RPython Framework Breakdown – Shows the breakdown of time spent in various components of the

RPython framework in CLBG. The PyPy and Pycket implementations are suffixed with _p and _r respectively.

time in rordereddict.ll_call_lookup_function, which is the hashmap lookup function of

RPython’s dictionary data structure.

6.5.4 Interpreter-Level Characterization: JIT Warmup

Warmup can have important performance implications: compiling traces too eagerly results in

wasted work, and compiling traces too lazily results in wasted opportunity. Traditional character-

ization methods can struggle to capture detailed warmup behavior. This is because the overhead

associated with the process of measuring might alter the measured performance. We insert cross-

layer annotations at the interpreter level at the beginning of each iteration of the dispatch loop. This

enables accurately measuring the bytecode execution rate using a PinTool, and enables a precise

definition of completed work per unit time. This data can enable finding the break-even points where

JIT-compiling can compile efficient code that amortizes the overhead of tracing and compiling.

Figure 6.6 shows the warmup curves of the benchmarks, normalized to CPython. These plots

show the number of bytecodes executed per unit time compared to CPython over the first 10

billion assembly instructions executed. It also shows the PyPy warmup break-even points for the

point in time where the number of bytecodes executed thus far on PyPy matches that on CPython

(dashed vertical lines) and PyPy without JIT (dotted vertical lines). In PyPy, it is surprising that the

meta-tracing JIT compilation incurs negligible slowdowns compared to running the code on a PyPy

interpreter without a meta-tracing JIT. The break-even point for PyPy compared to PyPy without JIT

is usually reached very early on in the programs. There is more variability for the break-even points

of reaching CPython performance. The programs where PyPy’s performance advantage is smaller
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Figure 6.6: PyPy Warmup – PyPy bytecode execution rate normalized to CPython for the first 10 billion instructions.

The dashed vertical lines indicate the break-even point with respect to CPython: in this point in time, both PyPy and

CPython have executed the same number of bytecodes. The dotted vertical lines indicate the break-even point with

respect to PyPy without JIT. The cross indicates the eventual (at the end of the execution) speedup of PyPy compared to

CPython. The benchmarks are sorted in the order of speedup over CPython.
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Benchmark % Src Function

ai 19.4 I setobject.get_storage_from_list

bm_chameleon 17.9 R rordereddict.ll_call_lookup_function

bm_mako 26.1 L runicode.unicode_encode_ucs1_helper

bm_mako 12.8 R rordereddict.ll_call_lookup_function

bm_mdp 16.8 R rordereddict.ll_call_lookup_function

django 16.6 L rstring.replace

django 14.8 R rordereddict.ll_call_lookup_function

eparse 12.3 R rstr.ll_join

fannkuch 20.0 I IntegerListStrategy._setslice

fannkuch 15.9 I IntegerListStrategy._fill_in_with_sliced...

genshi_xml 12.4 R rordereddict.ll_call_lookup_function

hexiom2 10.8 I IntegerListStrategy._safe_find

html5lib 13.1 I W_UnicodeObject._descr_translate

json_bench 18.5 M _pypyjson.raw_encode_basestring_ascii

json_bench 10.6 R rbuilder.ll_append

meteor-contest 35.4 I BytesSetStrategy.difference_unwrapped

meteor-contest 22.2 I BytesSetStrategy.issubset_unwrapped

nbody_modified 44.6 C pow

pidigits 36.1 L rbigint.divmod

pidigits 33.2 L rbigint.int_mul

pidigits 13.0 L rbigint.lshift

pidigits 12.6 L rbigint.add

pyflate-fast 16.1 R rstr.ll_find_char

pyflate-fast 11.7 I BytesListStrategy.setslice

spitfire 22.1 R rstr.ll_join

spitfire 14.4 R rstr._ll_strhash

spitfire_cstringio 14.6 R rbuilder.ll_append

spitfire_cstringio 14.1 R ll_str.ll_int2dec

telco 13.4 L rarithmetic.string_to_int

twisted_tcp 16.6 C memcpy

Table 6.3: Significant AOT-Compiled Functions From Meta-Traces – Significant (>10% of overall execution)

functions. The percentages are the time spent in AOT-compiled functions in overall execution. Src is where the

functions are defined: R = RPython type system intinsics; L = RPython’s std lib; C = external stdlib call; I = interpeter;

M = PyPy module.

tends to have break-even points that are later. These benchmarks tend to be more complicated and

have many different traces, so the warmup tends to take longer.
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Figure 6.7: JIT IR Node Compilation and Execution Statistics – (a) Total number of JIT IR Nodes compiled

throughout the benchmarks (every benchmark executed for 10B instructions), shown in log scale. (b) Most commonly

executed JIT IR nodes (95% of the time spent in JIT-compiled code) shown as percentage of all IR nodes compiled.

(c) Total (dynamic) number of IR nodes executed for every one million of assembly instructions executed. The

benchmarks are sorted in the order of speedups over CPython.

Figure 6.8: Categorized Weighted IR Node Frequency by Benchmark – Shows categorized breakdown of roughly

the ratio of time spend in each class of IR nodes.
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Figure 6.9: IR Node Frequency – In the PyPy Benchmark Suite, shows the frequency of the most common 35 IR

node types.

6.5.5 JIT IR-Level Characterization: Compilation Burden and Usefulness of Meta-Traces

One potential drawback of tracing-based JITs as opposed to method-based JITs is long and

redundant traces. Whereas the unit of compilation in a method-based JIT is typically an application-

level method, for tracing-based JITs, it is a particular trace taken as an application-level loop is

executed. Different functions called as the loop executes are inlined into the trace, and different

control paths taken result in different traces. Tracing-based JITs therefore tend to perform poorly

when the application-level code has many alternative control flow paths that are taken in similar

probabilities. Such code can result in the compilation of many traces, most of them infrequently

used. JIT compilation of unused traces can be a compilation burden and hurt the performance,

especially for long traces. Loops with long bodies (or loops that call many functions) result in long

traces. The main drawback of long and infrequently used traces is the time it takes to compile them

may not be amortized especially since some compiler passes have superlinear complexities with

respect to the size of the code. The secondary drawback is increased memory usage to store the

generated code.

Figure 6.7(a) shows the number of IR nodes that are JIT-compiled, which shows a large vari-

ability, ranging from less than 1000 (float, nbody_modified, slowspitfire, and pidigits)

to 370,000 (sympy_integrate). Compiling a small number of IR nodes can indicate either the

program does not have many branches due to its arithmetically heavy nature, or in the case of

pidigits, spends most of its time in calls to AOT-compiled functions for arithmetic operations.

While there is a large variability across different benchmarks, the best performing benchmarks typi-

cally compile between 2000-20,000 IR nodes. Figure 6.7(b) shows the percentage of JIT IR nodes
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that are executed 95% of the time spent in the JIT. For some benchmarks (e.g., spectral-norm,

spitfire_cstringio, slowspitfire, and bm_mdp), only 5% of the compiled IR nodes are exe-

cuted 95% of the time, indicating these benchmarks have exceptionally “hot” regions within the

JIT-compiled code. For these benchmarks, multi-tiered JIT compilation might be beneficial even

though this is not currently supported in RPython. If a large number of JIT-compiled IR nodes are

used in the 95th percentile, this shows that many traces are used equally (e.g., in sympy_integrate

and sympy_str) indicating a very branchy application and large compiler burden (as Figure 6.2

also shows large tracing and blackhole overheads). Figure 6.7(c) shows the number of executed

IR nodes per one million dynamic assembly instructions. This data mostly matches the time spent

in JIT-compiled code in Figure 6.2. The variations are mostly due to some IR nodes mapping

to different number of x86 assembly instructions. It can also be seen that the best performing

benchmarks on PyPy tend to have higher than average dynamic number of executed IR nodes.

6.5.6 JIT-IR-Level Characterization: Composition of Meta-Traces

Figure 6.9 shows the dynamic frequency histogram of different IR node types encountered in

the PyPy Benchmark Suite, based on how many times these nodes are executed. Interestingly, 80%

of IR node types constitute less than 1% of the overall execution in the JIT-compiled traces (mostly

for uncommon use cases). Two IR nodes, getfield_gc and setfield_gc, constitute more than

18% and 10% respectively of all JIT traces. Implied by their name, these two operations get or set a

field from a pointer, resulting in a memory load or a store after pointer arithmetic.

However, the frequency alone of these IR node types does not indicate how expensive they

are. For this, Figure 6.10 shows on average, how many x86 assembly instructions are required to

implement each IR node type. We can see that the top IR node type is call_assembler which

maps to more than 30 assembly instructions. Other types of calls also take up more than 15 assembly

instructions. The call_assembler calls another JIT trace from this trace, while the other call_

nodes call AOT-compiled functions. These values are the call overheads, not the time spent in the

called functions. However, most IR nodes, including the common getfield_gc and setfield_gc,

require only one or two assembly instructions.

Figure 6.8 shows the breakdowns with IR nodes categorized as: memory operations (memop),

guards, call overheads, control flow (ctrl), integer operations (int), memory allocation (new), floating-

point operations (float), string operations (str), pointer manipulations (ptr), and unicode operations.
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Figure 6.10: Average Number of Assembly Instructions of IR Nodes – In the PyPy Benchmark Suite, shows the

average number of assembly instructions to implement the top 35 most expensive IR node types.

Across all benchmarks, memory operation IR nodes are the most common, around 26%, followed by

guards at 22%, call overheads at 18%, and control flow at 16%. Memory operations are the biggest

part of meta-traces, followed by guards, which are unique to JIT-compiled code. Call overheads are

also a major part of meta-traces.

Looking at how these categories break down per benchmark, we see that memory opera-

tions are the most significant part of meta-traces for most benchmarks, which likely is due to

Python code that makes it easy to work with complex data structures. Exceptions to this are

bm_chameleon, bm_mako, bm_mdp, fannkuch, pidigits, spambayes, spectralnorm. We see

that bm_chameleon, pidigits, and spitfire_cstringio have large call overheads, as these

benchmarks cause many calls to AOT-compiled functions. As an example, pidigits is making

very heavy usage of bignum arithmetic, which is all implemented in AOT-compiled code that the

meta-traces call into. We see that guard percentages stay similar across different benchmarks except

for richards where it constitutes most of the execution. We see that even in the arithmetic-intensive

benchmarks (e.g., float, nbody_modified, chaos), integer and floating point operations do not

constitute a significant portion of meta-traces.

6.5.7 Microarchitecture-Level Characterization

Table 6.1 shows the instructions per cycle (IPC) and branch misses per 1000 instructions (MPKI)

for the benchmarks. There is a high variance (standard deviation is 0.37, 0.30, and 0.41 respectively

for CPython, PyPy without JIT, and PyPy with JIT) in IPC across all benchmarks, indicating the

application has a major impact on the IPC. However, CPython has a better IPC than PyPy with JIT

by 15%, and PyPy without JIT by 32%. The IPC difference between the two interpreters without
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the JIT is surprising and partially accounts for the 2⇥ performance gap between the two. This is

again likely because RPython is not optimized for use as an interpreter without a meta-tracing JIT.

The JIT-compiled code includes numerous guards to ensure the observed control paths still hold

true. This might lead to an increase in the number of branches. However, the results show that

the branch rate across all interpreters is almost identical and different benchmarks do not show

much variation. The MPKI of CPython and PyPy without JIT is very similar, however when the

JIT is enabled, the MPKI drops by 35%. This is likely due to the more specialized and denser code

produced by the JIT helping the processor to better predict the control flow [RSS15].

The cross-layer annotations also allow us to study microarchitectural characteristics by phases.

Table 6.4 shows the mean and standard deviation of IPC, branches per instruction, and branch

miss rate for each phase. As the overall results suggested, the interpreter IPC tends to be low

with a relatively large misprediction rate. This is partially due to the interpreter being used only

at the beginning for a short amount of time. The JIT phase (in this table, this also includes calls

to AOT-compiled functions from the JIT-compiled code) has the largest IPC mean and the largest

variation. It also has the lowest miss rate. The higher variation in the microarchitectural values

is due to the application-specific nature of JIT-compiled code. The blackhole interpreter has the

worst IPC among the phases, making the observations in Section 6.5.2 regarding the expense of this

phase even more significant. Finally, the GC phase has a relatively high IPC compared to the other

phases, perhaps because the same collection code is executed over and over, allowing the predictors

to warm up sufficiently.

6.6 Discussion

In this section, we use the results from Section 6.5 to derive initial answers to the nine key

questions listed in Section 6.1.

1. Can meta-tracing JITs significantly improve the performance of multiple dynamic languages?

While it is well known that JIT compilation can significantly improve the performance of dynamic

languages, the performance of meta-tracing JITs across different languages is still an active research

area. As Table 6.1 showed, the PyPy meta-tracing JIT was indeed able to out-perform the CPython

interpreter on almost all benchmarks (up to 51⇥ on richards and 30⇥ on crpyto_pyaes). Look-

ing at the CLBG results in Table 6.2, the Pycket meta-tracing JIT had comparable performance to
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Phase IPC Branch / inst Branch miss rate

interpreter 0.76 (0.26) 0.15 (0.019) 0.06 (0.021)

tracing 1.05 (0.07) 0.15 (0.003) 0.05 (0.005)

JIT 1.24 (0.53) 0.16 (0.038) 0.02 (0.026)

blackhole 0.48 (0.10) 0.13 (0.009) 0.09 (0.019)

GC 1.18 (0.30) 0.20 (0.024) 0.04 (0.016)

Table 6.4: Microarchitectural Characterization of Phases – Microarchitectural means (and standard deviation in

parentheses) by RPython phase in the PyPy Benchmark Suite.

Racket, a custom JIT-optimizing VM. Even though there are some exceptions, and certainly room

for improvement, our results seem to confirm the promise of meta-tracing JITs.

2. Does generating and optimizing traces in a meta-tracing JIT add significant overhead?

The conventional wisdom is that JIT warmup can add a significant overhead, which might be

problematic especially when interactivity is important. We see in Figure 6.2 that tracing can

consume a large percentage of the total execution time for certain benchmarks. However, Figure 6.6

shows that the break-even point where meta-tracing JIT performance exceeds PyPy without the

meta-tracing JIT occurs early in the benchmark execution. This suggests that even for short running

applications, enabling the meta-tracing JIT does not significantly reduce performance. So compared

to the basic PyPy interpreter, the overhead is not as significant as the conventional wisdom might

suggest. CPython’s interpreter is faster than PyPy without the meta-tracing JIT, so the corresponding

break-even point is somewhat later in the execution.

3. Does deoptimization in a meta-tracing JIT consume a significant fraction of the total execution

time? The conventional wisdom is that deoptimization should be relatively inexpensive [HCU92,

KM05, SB12]. Figure 6.2 shows that deoptimization (implemented using the “blackhole interpreter”

in RPython) can consume more than 10% of the total execution time for some benchmarks. The

phase diagrams of both fast-warming and slow-warming benchmarks in Figure 6.3 illustrate that

the blackhole phase is an essential part of the warmup process. Meta-traces compiled when the

control-flow coverage is insufficient require many deoptimizations to fall back to the interpreter and

compile additional meta-traces. Furthermore, Table 6.4 suggests that the blackhole phase performs

poorly on modern hardware. Our results suggest that deoptimization presents a more significant

overhead than perhaps the conventional wisdom might suggest.
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4. Does garbage collection in a meta-tracing JIT consume a significant fraction of the total exe-

cution time? While garbage collection (GC) used to be a significant worry, modern JIT-optimizing

VMs are carefully constructed to ensure that GC only consumes a small fraction of the total ex-

ecution time (e.g., Wilson writes it “should cost roughly ten percent of running time” [Wil92],

which Jones and Lins call a “not unreasonable [figure] ... for a well-implemented system” [JL96, p.

13]). The breakdowns in Figure 6.2 confirm that RPython’s GC does indeed consume a reasonable

fraction of the total execution time with the exception of a few memory-intensive benchmarks.

5. Is all JIT-compiled code equally used in a meta-tracing JIT? The conventional wisdom states

that there is different levels of “hotness” of frequently executed code leading to multi-tiered JITs,

where the “hotter” a code region is, the more the compiler will try to optimize. However, this effect

might be less pronounced in a tracing JIT due to each trace of execution getting compiled separately,

so there might be many JIT-compiled traces which are executed roughly equally. Figure 6.7 shows

that there is indeed a large “hotness” variability where in some benchmarks only 5% of compiled

IR nodes are executed 95% of the time. For these cases, multi-tiered JIT compilation indeed should

help.

6. Does a meta-tracing JIT need to spend most of its time in the JIT-compiled code to achieve

good performance? Because JIT-compiled code is optimized using run-time feedback, the conven-

tional wisdom suggests that most of the time should be spent executing JIT-compiled instructions.

However, Figure 6.2 showed that many benchmarks (including several high-performance bench-

marks) spend more of their time in AOT-compiled functions than JIT-compiled code. Because

irregular control flow can potentially reduce performance, there is a delicate balance between code

which should be JIT-compiled (to benefit from run-time feedback), and code which should be

AOT-compiled (to avoid generating many bridges).

7. What fraction of the time in the JIT-compiled code is overhead due to the meta-tracing JIT?

The conventional wisdom is that it is difficult to optimize dynamic languages, so overheads such

as pointer chasing to access high-level data structures cannot be easily optimized away [CEI

+
12].

If we look at the breakdown in Figure 6.8, we see that memory operations indeed constitute the

most significant time of JIT-compiled code. In addition, most guards also represent a JIT-specific

overhead. Finally, calling AOT-compiled functions brings in a substantial overhead. While it is hard

to name an exact percentage, it is likely that more than half of the JIT-compiled code is overhead.
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8. What is the microarchitectural behavior of JIT-compiled code? The conventional wisdom

states that JIT-compiled code might be inefficient compared to AOT-compiled code or a pure

interpreter due to additional overheads such as guards. Comparing the performance to statically

compiled languages and CPython in Table 6.2, we see that meta-tracing JITs indeed have lower

IPC. However, the IPC is usually within 0.5 of C code, meaning the gap is not as significant as one

might assume. Furthermore, comparing the microarchitectural behavior of the RPython interpreter

with and without the meta-tracing JIT in Table 6.2 and the phase microarchitectural breakdown in

Table 6.4, we can see that the JIT-compiled code has better microarchitectural behavior than other

phases of the RPython framework.

9. Why are meta-tracing JITs for dynamic programming languages still slower than statically

compiled languages? Holistically considering our workload characterization, it is clear that there is

no single reason. The meta-tracing framework has many components that different benchmarks and

languages stress in different ways. The microarchitecture-level results do suggest that the primary

problem is less that the JIT-compiled code is difficult to execute efficiently on modern architectures,

and more that meta-tracing JITs still do significantly more work than statically compiled languages.

Overall, there is no single “silver bullet” to improve meta-tracing JIT performance, meaning there is

a wide array of opportunities for future researchers from both the VM and architecture communities.

6.7 Related Work

To our knowledge, this is the first multi-language, cross-layer workload characterization that

focuses on meta-tracing JITs.

Sarimbekov et al. study the workload characteristics of various dynamic languages on the JVM

using the CLBG benchmarks [SPB

+
13]. They find that even though the implementations use many

polymorphic callsites, most runtime method invocations are actually monomorphic. They also find

that dynamic languages allocate significantly more objects than Java, most of which are short-lived,

due to the additional boxing/unboxing that is common in dynamic languages. Ismail and Suh

present a workload characterization of PyPy and CPython [IS18]. Their characterization focuses

primarily on garbage collection and managed memory and is orthogonal to this work.

Rohou et al. study branch misprediction in switch-based interpreters on Haswell-generation Intel

hardware [RSS15]. They find that counter to folklore [EG01], the cost of branch misprediction is
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very low on modern hardware, so techniques like jump threading are no longer necessary. However

the statement of Rohou et al. that the “principal overhead of interpreters comes from the execution

of the dispatch loop” is itself called into question by the work of Brunthaler [Bru09]. He argues that

this “is specifically not true for the interpreter of the Python programming language.” The reason he

gives is that Python bytecodes do a lot of work, so the overhead of bytecode dispatch is relatively

lower. Castanos et al. observe this as well [CEI

+
12]. They write: “[in Jython] a single Python

bytecode involves between 160 and 300 Java bytecodes, spans more than 20 method invocations,

and performs many heap-related operations. Similar path lengths are also observed in the CPython

implementation.”

Anderson et al. introduce the “Checked Load” ISA extensions to offload type checking overhead

to hardware in dynamic language interpreters [AFCE11]. Choi et al. propose a similar hardware

mechanism for object access [CSGT17]. Gope et al. identify calls to AOT-compiled functions from

the PHP JIT as significant overhead and propose hardware accelerators for common framework-level

functions [GSL17]. Dot et al. present a steady-state performance analysis of the V8 JavaScript

engine using the builtin sampling profiler and present hardware mechanisms to provide a 6%

performance speedup [DMG15]. Southern and Renau use real systems to characterize the overhead

of deoptimization checks (guards) in V8 [SR16]. Like our findings, they also find that the cost of

such checks is lower than the conventional wisdom might suggest in the context of V8.

Würthinger et al. provide an overview of the Truffle system and the concept of runtime calls

(AOT-compiled calls) from the JIT-compiled code, but do not quantify the overheads of such

calls [WWH

+
17].

Holkner and Harland evaluate the dynamic behaviour of Python applications [HH09]. They find

that all the tested programs use some dynamic reflective features that are hard to compile statically,

and a large fraction of the tested programs execute code that is dynamically generated at runtime

(20%).

There have been some studies to characterize the performance of JavaScript, e.g., [RLBV10]

study the dynamic features typically used in JavaScript, and [RLZ10] study the correlation between

benchmarks and their real-world counterparts.
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6.8 Conclusion

We have presented a cross-layer workload characterization of meta-tracing JIT VMs. To make

this study possible, we first introduced a new cross-layer annotation methodology, which allows in-

serting annotations at different abstraction levels of a multi-level VM (e.g., the RPython framework),

and observing these at different levels of execution (e.g., the binary level to get microarchitectural

statistics, or the assembly layer to intercept using a dynamic binary instrumentation tool). We then

used two RPython interpreters, PyPy and Pycket, for application-level, framework-level, interpreter-

level, JIT IR-level, and microarchitecture-level characterization. We finally provided initial answers

to nine key questions regarding meta-tracing JIT VM performance. One main takeaway is the

performance characteristics are highly varied across different applications, bottlenecked by different

parts of the meta-tracing JIT VM, and there is likely no single “silver bullet” that could give

significant speedups by a small change in software or hardware.

116



CHAPTER 7

SOFTWARE/HARDWARE CO-DESIGN TO EXPLOIT
OBJECT DEREFERENCE LOCALITY

As Chapter 6 shows, there are a number of diverse factors that can reduce the performance

of applications that execute on meta-tracing JIT VMs. This unfortunately means that there is no

“silver bullet” hardware acceleration idea that can significantly improve the performance across the

board. However, the data also suggest that the time spent while executing JIT-compiled code is a

significant part of the overall execution. Hardware acceleration techniques targeting the execution

of JIT-compiled code can have tangible performance benefits on many benchmarks. In this chapter,

I identify one promising type of value locality called object dereference locality in the JIT-compiled

code. Then I propose a software/hardware co-design approach to exploit this pattern to reduce

dynamic instruction count by up to 40% while executing JIT-compiled code.

7.1 Introduction

Dynamic programming languages are growing in popularity across the computing spectrum

from smartphones (e.g., JavaScript for mobile web clients), to servers (e.g., Node.js, Ruby on Rails),

to supercomputers (e.g., Julia for technical computing). Dynamic programming languages such

as Python, JavaScript, PHP, Ruby, and MATLAB are all now among the top-ten most popular

programming languages. Dynamic languages typically provide productivity-focused features such

as: lightweight syntax, dynamic typing of variables, managed memory, rich standard libraries,

interactive execution environments, and advanced reflection capabilities. However, simple in-

terpreters for dynamic languages are often multiple orders-of-magnitude slower than statically

compiled languages such as C/C++. While dynamic languages are not amenable to ahead-of-

time compilation, just-in-time-optimizing virtual machines (JIT VMs) [Ayc03, AFG

+
05] can

improve performance by identifying frequently executed code paths and the concrete types of

variables in these locations, and generating type-specialized machine code for these hot paths

in a just-in-time fashion [BCFR09, BT15, WWW

+
13, WWS

+
12, Höl13, GES

+
09, spi, jul, v8].

While state-of-the-art JIT VMs close a major part of the performance gap, it is still common

to have up to an order-of-magnitude slowdown compared to C/C++. Another drawback of JIT

VMs is the immense engineering effort required to build them. However, partial-evaluation-
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based [WWH

+
17, WWW

+
13, WWS

+
12] and meta-tracing-based [BCFR09, BT15] frameworks,

which allow automatically building JIT VMs from dynamic language interpreters, have recently

been gaining traction. VMs built using these frameworks can rival the performance of custom-built

JIT VMs, and improvements to the common runtime ultimately benefit all of the dynamic language

interpreters that use that runtime.

Dynamic languages allow usage patterns that do not exist in static languages: a variable can

point to values of different types; types can be mutated; and reflection allows programmatically

manipulating objects and classes. Because of this, VMs cannot make a priori assumptions regarding

types, resulting in many indirect lookups. For example, to get a field of an object, the VM must

first get the type object, then get the object map (similar to virtual method tables) from the type

object, then perform a lookup in the object map to find the field slot corresponding to the field name,

and finally get the field value. The JIT removes dereferences and new object allocations when it

can prove it is safe to do so, but there are many cases where potential aliasing or the interaction of

non-JIT-compiled code prevent such optimizations [SWM14, BCF

+
11a]. Chapter 6 shows that at

the VM level, the execution time is mostly spent in the JIT-compiled code, but roughly half of the

JIT-compiled operations are memory operations and checks, even after the safe dereferences, checks,

and allocations are removed. In this chapter, we study object dereferences in the JIT-compiled code

in meta-tracing JIT VMs and find that a large percentage have load-value locality: these instructions

load from a small set of addresses, and the values loaded are constant with respect to the address.

Additionally, we observe that at the intermediate-representation- (IR) level, these usually constant

loaded values are often used by pure IR operations. These two observations form the foundation for

what we call “object dereference locality”. We propose a software/hardware co-design technique to

identify and exploit skippable sub-traces (SSTs) out of the larger JIT-compiled trace that have object

dereference locality. We use SST profiling to identify loads with value locality in JIT-compiled

traces, SST recompiling to recompile these traces and form the skippable sub-traces, SST execution

to skip over the sub-traces if the hardware can prove it is safe to do so, and SST invalidation to

monitor stores that might make a particular sub-trace no longer safe to skip.

The contributions of this chapter are: (1) we characterize object dereference locality in the

context of meta-tracing JIT VMs; (2) we propose using software/hardware co-design to discover

object dereference locality in JIT-compiled traces, recompile JIT-compiled traces to include skip-

pable sub-traces using an ISA extension, a hardware scheme to skip these sub-traces if safe, and
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1 sum = 0
2 for node in nodes:
3 sum += node.val

Figure 7.1: Python Accumulate Example

1 while True:
2 bc = bcs[i]
3 if bc.type == ADD:
4 v1 = stack.pop()
5 v2 = stack.pop()
6 if (v1.type == IntObj &
7 v2.type == IntObj):
8 i1 = v1.intval
9 i2 = v2.intval

10 res = add_ovf(i1, i2)
11 stack.push(res)
12 elif ...
13 elif bc.type == ...

Figure 7.2: Simplified Python Interpreter Snippet

1 label(j, n, nodes, sum)
2 i0 = (j >= n)
3 guard_false(i0)
4 p1 = nodes[j]
5 i2 = j + 1
6 iterator.index = i2
7 guard_nonnull_class(p1, UserInstanceObj)
8 p2 = p1.map
9 guard_value(p2, 9453327)

10 p3 = p1.value0
11 guard_nonnull_class(p3, IntObj)
12 i4 = p3.intval
13 i5 = sum + i4
14 guard_no_overflow()
15 jump(i2, n, nodes, i5)

Figure 7.3: Pseudo-IR of JIT-Compiled Trace

a hardware mechanism to detect conditions that would make it unsafe to skip the sub-traces; and

(3) we evaluate the sub-trace skipping design using dynamic instruction counts and cycle-level

simulation for two different meta-tracing JIT VMs for the Python and Racket languages.

7.2 Motivation

Figure 7.1 shows a simple loop from an example Python application that increments a local

variable sum with the val fields of a list of Node objects. The interpreter would look similar to the

simplified example in Figure 7.2 with an interpreter loop that performs the semantics of the current

bytecode. Lines 3–11 show a subset of addition semantics in Python. Notably, the type check and

integer overflow checks are required due to these semantics. Figure 7.3 shows the pseudo-IR of the

JIT-optimized trace that corresponds to the application-level loop, generated through meta-tracing

multiple iterations of the interpreter, until the application-level loop is completed. Since the trace

was generated by executing the interpreter, we can see the equivalence of type and overflow checks

on lines 7 and 10 in Figure 7.2 with lines 11 and 14 in Figure 7.3 respectively.

An important observation in the trace in Figure 7.3 is that a similar C++ code would only need

to perform the operations in lines 1–5, 12, 13, and 15. The storage of the current induction variable

to the iterator object in line 6 is due to higher level iterators in Python, line 7 checks that p1 (node)
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is indeed a user-defined class (as opposed to a built-in type), and lines 8–9 check if node has the

same map as the particular user-defined class object that was observed when the trace was built.

Objects in dynamic languages are name bound: the semantics require field lookups to be equivalent

to be a string-indexed lookup in a mutable dictionary (e.g., Python’s __dict__). To reduce the

number of string-indexed lookups, interpreter-level immutable data structures called maps are used

to assign slots to fields of known user-defined classes [BCF

+
11b]. The check in line 9 thus allows

skipping the string-indexed lookup into the map as long as the object has the same map, meaning

the type of node is what was previously observed (Node). By this point, we know the type of p1, so

we can type specialize: line 10 gets the val field using the recorded slot (value0), line 11 checks

if val is an IntObj, line 12 unboxes the IntObj object to get the raw integer value, and line 14

ensures the addition that was performed did not overflow. It is important to note that while in this

case the guards in lines 7, 9, and 11 will not fail, for correctness they are required in case nodes

contains objects of a different type, the val field is not an int, or the Node class itself is mutated.

Allocation and dereference removal JIT optimization techniques tackle overheads such as these.

The state-of-the art in these optimizations in the context of tracing JITs work at the granularity

of traces [SWM14, BCF

+
11a]. These algorithms identify objects that are repeatedly accessed in

the same trace. Then, as long as the optimizer can guarantee that there are no operations in the

trace that would change the outcome of the loads, these loads are hoisted to the beginning of the

JIT-compiled code. Similarly, stores and new object allocations can be moved to the exits points

of the trace, allowing reuse within the trace. This optimization is able to remove on average 89%

of load, store, and new allocation operations across many benchmarks [BCF

+
11a]. For instance,

because of the allocation and dereference removal optimization, the type check, unboxing of the

raw integer, and boxing the raw integer back into an int object for sum were successfully optimized

away in Figure 7.3. While this is very impressive, the optimizer has to be conservative when there

is any possibility of a store that can modify the outcome of a hoisted load. Furthermore, these loads

still have to be performed every time a different JIT trace is entered, which reduces the performance

of control-flow-intensive code.

To characterize the overhead of object dereferences that almost always return the same data (e.g.,

lines 8 and 10) and checks that never fail (e.g., lines 7, 9, and 11), we identify object dereferences

with object dereference locality (ODL) at the IR level. These object dereferences have high load-

value locality: they load from a few effective addresses and load the same data from these addresses.
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Figure 7.4: JIT IR Dataflow Graph for Accumulate Example – The numbers correspond to line numbers in

Figure 7.3. Triangles are load IR nodes, circles are pure IR nodes, and squares are remaining IR nodes. Shaded triangles

and circles are IR nodes with object dereference locality and derived value locality respectively.

Figure 7.5: Example JIT IR Dataflow Graph from Richards

We further propagate ODL to dependent pure operations at the IR level (given the same input,

these always return the same output). We call this type of locality dependent value locality (DVL).

Figure 7.4 shows the dataflow graph (DFG) that corresponds to the trace in Figure 7.3. The numbers

in Figure 7.4 correspond to the line numbers in the trace, and we represent IR nodes in three different

shapes: triangles for object dereferences, circles for pure operations (includes most guards), and

squares for the remaining IR nodes. We show the nodes with ODL and DVL using shaded triangles

and circles respectively. Figure 7.5 shows a similar DFG from the richards benchmark. Table 7.1

shows the percentage of dynamic instructions in the traces that have ODL, DVL, and the combined
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Benchmark ODL % DVL % IVL %

ai 6.9 8.9 15.8

nbody 8.5 16.2 24.7

binarytree 5.7 7.9 13.6

fasta 9.1 9.3 18.4

richards 18.2 28.6 46.8

spectralnorm 7.1 9.2 16.3

Table 7.1: Value Locality in JIT-Compiled Code – Value locality measured as a percentage of the dynamic instruction

count. ODL = object dereference locality; DVL = derived value locality; IVL = IR-level value locality (ODL + DVL).

IR-level value locality (IVL) for some of the Python benchmarks running on PyPy. While ODL

itself is modest (5–18%), the upper bound on instruction savings in the JIT-compiled region is 13%

to 46%. This potential overhead makes the case for a software/hardware co-design technique that

can skip over these IR nodes that have high IR-level value locality.

7.3 Skippable Sub-Traces

To exploit IR-level value locality in meta-tracing JIT VMs, we propose a software/hardware

co-design approach called skippable sub-traces (SST). The rest of this section explains each of the

components in detail.

7.3.1 SST Profiling

In order to exploit IVL in the JIT-compiled traces, the JIT compiler has to know which operations

are likely to exhibit ODL. One approach is to use software-based profiling: instructions can be

inserted into JIT-compiled code to check the addresses and loaded values of object dereferences.

However, this approach can potentially introduce large overheads, since more than a quarter of all

operations in JIT-compiled traces are memory operations (see Chapter 6). Alternatively, interpreter-

level heuristics could be used, since certain interpreter-level variables are unlikely to change. For

example, line 8 in Figure 7.3 is not likely to change throughout the execution because types in

programs are generally stable. However, interpreter-level heuristics would require annotating every

single interpreter with these hints in order to exploit ODL. In addition, this approach would likely

introduce both false positives and miss some of the opportunities. We instead propose using an
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Figure 7.6: SST Architecture – Helper processor (HP)

is attached to the main processor (P) using memory re-

quest/response snooping network. SSIE snoops write re-

quests from the processor. Both SSIE and HP have special

bypass channels into the L1 cache request port.

Figure 7.7: SST Synchronous Invalidation Engine
(SSIE) – The entry table (ET) contains the equality checker

or bloom filter ID and the corresponding sub-trace entry

address (STEA) into the memory-mapped sub-trace entry

region.

Figure 7.8: Memory Regions Allocated in Main Mem-
ory – The VM allocates a per-trace profile region and a

global sub-trace entry region. The profile region contains

a bit that triggers a recompilation, and the remaining bits

indicate whether a given object dereference has locality.

The sub-trace entry region contains one entry per sub-trace

entry, with a word for the memoized data, the PC of corre-

sponding SST instruction, and two input values. STEBA =

Sub-Trace Entry Base Address.

additional processor core to identify ODL in an asynchronous fashion. Figure 7.6 shows the main

processor (P) that executes the meta-tracing JIT VM, and a helper processor (HP) that is connected

with a memory request/response snooping network. The JIT compiler emits code that uses specially

marked load instructions for object dereference operations. The processor sets a special bit in the

L1 cache request bus when it executes these marked load instructions. The memory requests with

the bit set will be snooped and stored in an HP input queue. The loaded values from the L1 cache
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will also be matched against the request addresses in the HP input queue. Using the address and

value pairs, software running on the HP can detect which loads exhibit object dereference locality.

The VM allocates an area in the virtual address space called the profile region for every JIT

trace and communicates this to the HP, as shown in Figure 7.8. This enables the helper processor

to asynchronously notify the JIT runtime running on the main processor with a list of object

dereferences with ODL. The per-trace profile region consists of a per-trace recompile bit and ODL

bits for every JIT IR-level dereference operation. The VM inserts a guard to each JIT-compiled trace

to read and check if this recompile bit has been set. If the bit is set, the guard triggers recompilation

routines in the VM. A set ODL bit is used to inform the VM if the indicated dereference operation

has locality. Figure 7.6 also shows the memory request bypass channel into the main processor’s L1

cache. This bypass channel prioritizes accesses from the HP. Once the HP reaches the threshold

for required number of samples, it marks which loads have locality in the profile region, using the

bypass channel. Because updates to the profile region are rare and small, and because the main

processor does not read this data until a recompilation request arrives, there will relatively little

memory contention using this bypass design. Once the ODL nodes have been marked, the HP will

also flip the recompile bit. This flipped bit will cause a guard failure in the trace and will force a JIT

recompilation of this JIT trace.

7.3.2 SST Recompilation

Once significant ODL has been identified, the JIT compiler recompiles the trace. The main goal

is to start with the ODL nodes and find dependent pure operations that can be grouped together. The

grouped IVL nodes are called skippable sub-traces (SSTs). Figure 7.10(a) shows the trace from

Figure 7.3 after it is recompiled. Figure 7.9 shows the SSTs on the dataflow graph from Figure 7.4.

Each SST has one or more inputs, zero or more outputs, and a body that contains the semantics of

the sub-trace. SSTs act like pure functions as long as there are no writes that change the outcome of

the dereferences inside the SSTs. Because SSTs are usually pure, their output can be memoized,

and execution can skip over these pure operations. If the particular inputs to an SST have been

encountered before, and if the SST has not been invalidated, then the SST body can be skipped

over. Figure 7.10(b) shows the SSTs that have been formed. All of these SSTs start with an object

dereference that the helper processor identified to have value locality. From these dereferences,
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Figure 7.9: JIT IR Dataflow Graph with Conservative SSTs.

1 label(j, n, nodes, sum)
2 i0 = (j >= n)
3 guard_false(i0)
4 i2 = j + 1
5 iterator.index = i2
6 p1 = SST1(nodes, j)
7 SST2(p1)
8 p3 = SST3(p1)
9 i4 = p3.intval

10 i5 = sum + i4
11 guard_no_overflow()
12 jump(i2, n, nodes, i5)

(a)

1 SST1(nodes, j):
2 p1 = nodes[j]
3 guard_nonnull_class(p1, UserInstanceObj)
4 return p1
5 SST2(p1):
6 p2 = p1.map
7 guard_value(p2, 9453327)
8 SST3(p1):
9 p3 = p1.value0

10 guard_nonnull_class(p3, IntObj)
11 return p3

(b)

Figure 7.10: Conservative SSTs – Recompiled Traces from Figure 7.3 that correspond to the dataflow graph in

Figure 7.9. (a) Trace recompiled with skippable sub-traces (SSTs). (b) SST operations.

subsequent dependent pure operations have been added to the SSTs to grow them. The returned

values can be used by the rest of the trace and potentially used as inputs to other SSTs (e.g., p1).

Note that the SSTs formed in Figure 7.10 are conservative. Line 9 in Figure 7.10(a) is not part

of any SST, even though this dereference has locality. The reason for this is because i4 does not

have a pure dependent operation (even though line 10 is pure, it has an additional input, sum, that

does not have value locality). We do not allow single-node SST bodies because there would not

be any benefit to skipping the sub-trace. Checking if a sub-trace can be skipped costs at least one
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Figure 7.11: JIT IR Dataflow Graph with Aggressive SSTs.

1 label(j, n, nodes, sum)
2 i0 = (j >= n)
3 guard_false(i0)
4 i4, i2 = SST4(nodes, j)
5 iterator.index = i2
6 i5 = sum + i4
7 guard_no_overflow()
8 jump(i2, n, nodes, i5)

(a)

1 SST4(nodes, j):
2 p1 = nodes[j]
3 i2 = j + 1
4 guard_nonnull_class(p1, UserInstanceObj)
5 p2 = p1.map
6 guard_value(p2, 9453327)
7 p3 = p1.value0
8 guard_nonnull_class(p3, IntObj)
9 i4 = p3.intval

10 return i4, i2

(b)

Figure 7.12: Aggressive SSTs – Recompiled Traces from Figure 7.3 that correspond to the dataflow graph in

Figure 7.11. (a) Trace recompiled with skippable sub-traces (SSTs). (b) SST operations.

instruction. Furthermore, SST2 and SST3 are dependent on the output of SST1, so it is possible to

grow them to a single larger SST.

Figure 7.12 shows the trace after using an algorithm that grows the SSTs much more aggressively.

Figure 7.11 shows the aggressive SST on the dataflow graph. In this particular case, all of the

overhead operations can be reduced to a single large SST by chaining the nodes with ODL and

subsequent dependent operations. Also note that non-dependent operations that use the inputs of

the SST can be added (e.g., line 3 in Figure 7.12(b)). Growing SSTs also removes the need to

return intermediate values altogether (e.g., p1, p2, and p3). Aggressive SSTs can enable higher

performance by skipping over more code. However, aggressive SSTs also contain more object
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dereferences. Even though these dereferences have been identified to contain locality during

profiling, they are not guaranteed to exhibit the same behavior for the remainder of the execution. A

store executed elsewhere can alter the values that the dereference loads. This requires invalidating

the SST so that the values can be computed again with the new dereference values. Since aggressive

SSTs contain more dereferences, the likelihood of any one of them causing an invalidation is

significantly higher than a conservative SST.

7.3.3 SST Execution

Executing skippable sub-traces requires two techniques: SST entries and ISA extensions. SST

entries may either be stored in a dedicated scratchpad or in the memory system. If stored in the

memory system, similar to the profile region, the VM also allocates a page of memory in the

virtual address space called the sub-trace entry region (see Figure 7.8). This region consists of

cache-line-aligned sub-trace entries, where each of the entries contains the sub-trace PC, input

values, and the memoized data associated with the entry. Every unique input combination to an

SST will have a dedicated SST entry that contains the information about the SST and input values.

The VM stores the base address of the sub-trace entry region in the sub-trace entry base address

register (STEBA). If the number of sub-trace inputs is capped at two, each SST entry requires 256

bits for encoding. SST entries can thus be loaded using a single 256-bit wide load, which has similar

latencies as word-sized loads in modern processors [Fog18]. More than two SST inputs can be

supported using even wider loads. To find the correct SST entry, the processor uses a hash of the

input values to the SST to determine the sub-trace entry address. A larger sub-trace entry region

will result in fewer hash collisions. Lower quality hash functions can be used to ensure fast look-ups

with a modest increase in hash collisions.

To support efficient skippable sub-traces, we introduce SETSST and SST instructions, and tagged

register write operations that the JIT compiler uses to encode sub-traces. Figure 7.13(a) shows

an example assembly snippet of using these features, with the relevant semantics indicated in the

comments to Figures 7.13(b–f). The processor supports a number of SST registers (SSTRs), each

corresponding to an SST, with fields for input values (in), a hash value (hash), end PC for the SST

(end_pc), and return register specifier (rdest). At the entry to the JIT-compiled trace, the compiler

uses the SETSST instruction. As the semantics in Figure 7.13(b) show, this sets the input values in

the corresponding SSTR and calculates the hash value of the inputs so far.
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1 SETSST 1, r1, r2 # (b)
2 ...
3 op1 r1, ... tagged(1, 0) # nodes (c)
4 op2 r2, ... tagged(1, 1) # j (c)
5 ...
6 SST r3, 1, L1 # SST1 (d)
7 LDM r3, [r1 + r2] # p1 = nodes[j] (e)
8 JEQ r3, 0, Handler1 # guard(p1 != 0)
9 LDM r4, [r3 + 8] # p1.class (e)

10 # guard(p1.class == UserInstObj)
11 JNE r4, UserInstObj, Handler2 # (f)
12 L1: # If SST1 is skipped, it skips to here.

(a)

1 SETSST sst_idx, rin1, rin2, ... rinn:
2 SSTR[sst_idx].in[0] = R[rin0]
3 SSTR[sst_idx].in[1] = R[rin1]
4 ... # Other inputs
5 SSTR[sst_idx].hash = hash(sst_idx,

,! SSTR[sst_idx].in[0], ...)

(b)

1 tagged(sst_idx, sst_in):
2 # val is being written to reg file.
3 SSTR[sst_idx].in[sst_in] = val
4 SSTR[sst_idx].hash = hash(sst_idx,

,! SSTR[sst_idx].in[0], ...)

(c)

1 SST rdest, sst_idx, offset:
2 addr = STEBA + SSTR[sst_idx].hash
3 # Wide load from mem or scratchpad.
4 retval,idx,in0,in1 = M[addr]
5 if idx==sst_idx &

,! in0==SSTR[sst_idx].in[0] &
,! in1==SSTR[sst_idx].in[1] & ...:

6 # Valid entry.
7 PC = PC + offset
8 R[rdest] = retval
9 else:

10 # Invalid entry.
11 SST_IDX = sst_idx
12 SSTR[sst_idx].end_pc = PC + offset
13 SSTR[sst_idx].rdest = rdest

(d)

1 LDM rdest, [addr]:
2 protect_addr(SST_IDX, addr)

(e)

1 if NextPC == SSTR[SST_IDX].end_pc:
2 addr = STEBA + SSTR[sst_idx].hash
3 retval = R[SSTR[SST_IDX].rdest]
4 in0val = SSTR[SST_IDX].in[0]
5 in1val = SSTR[SST_IDX].in[1]
6 ... # Other inputs
7 M[addr] = retval,SST_IDX,in0val,in1val
8 SST_IDX = -1

(f)

Figure 7.13: SST ISA Extensions – (a) Usage of SETSST and SST instructions implementing SST1 from Figure 7.10(b).

The semantics of different components (b–f) are indicated in the comments. (b) Semantics of the SETSST instruction.

Sets up a SST register (SSTR) with the input values at this point. (c) Semantics of tagged register write instructions. It

updates the relevant SSTR input value using the value being written to the register file and updates the hash value with

the known inputs so far. (d) Semantics of the SST instruction. It calculates the hash value to perform a wide load from

either memory or scratchpad. The loaded values contain the return value for the SST entry, the SST index, and the input

values. To ensure this entry is valid and there has not been a collision, it checks these values against the values in the

SSTR. If the checks have been successful, it skips to L1 if the SSTR valid field is set and writes the return value to the

register file. (e) Semantics of marked load instructions, adds the load effective address to the SSIE to be protected. (f)

Semantics of sub-trace return. Stores the SST entry to the memory or scratchpad.

Any instruction that produces an input to an SST will be tagged by the compiler. These

instructions, in addition to writing to the register file, also update the corresponding SSTRs with

the most up-to-date SST input value. By exploiting the fact that the JIT-compiled code is a linear

trace, the compiler knows exactly which instructions will produce the input values to the SST. The

compiler tags these instructions with the SST index and the SST input number. For example, the
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operations in lines 3 and 4 in Figure 7.13(a) are both tagged writes for SST1 since they update r1

and r2 respectively, for inputs 0 and 1. This tag can be encoded either inline with the instruction

encoding, or separately in a memory region that contains the tag information across multiple

instructions. Figure 7.13(c) shows the semantics of tagged instructions. The input value for the

corresponding SSTR is then updated with the value that is being written to the register file (line 3).

Additionally, the hash is calculated using all of the inputs and the SST index (line 4).

Figure 7.13(d) shows the semantics of the SST instruction. When the SST instruction is executed,

the hash field in the SSTR is incremented by STEBA to generate the effective address for the sub-trace

entry in the memory or scratchpad (line 2). A wide load is performed using this effective address

(line 4). Due to the potential for collisions or invalid entries, the SST index and the input values have

to be checked against the values loaded from the sub-trace entry (line 5). If there are no mismatches,

then this is a valid entry, so the PC is set to jump over the sub-trace (line 7) and the return value

loaded from the sub-trace entry is written to the register file (line 8). Otherwise, the sub-trace

will not be skipped. SST_IDX is set to indicate that the processor is in the sub-trace tracing mode

(line 11). Additionally, the end PC and the return register specifier are set to finalize a sub-trace

entry at the end of sub-trace execution.

If the processor does not skip the sub-trace and it is in the sub-trace tracing mode, the compiler

uses marked load operations in the sub-trace (see lines 7 and 9 in Figure 7.13(a)). Figure 7.13(e)

shows that these marked loads protect the effective address by sending these to the SST Synchronous

Invalidation Engine (SSIE) (described in Section 7.3.4). Finally, upon the end of the sub-trace, the

SSTR values and the SST return value are written back to the relevant sub-trace entry in the memory

or scratchpad and the execution resumes as normal (see Figure 7.13(f)).

7.3.4 SST Invalidation

Skippable sub-traces are only safe to skip if the values loaded in the sub-trace have not changed

since creating the original sub-trace entry. We need special hardware support for monitoring the

stores performed by the main processor against the addresses that are read in the sub-trace, and

to invalidate the offending sub-trace entries in case of a match. We use a hybrid of synchronous

and asynchronous invalidation engines. The invalidation of sub-traces is only timing critical if the

sub-trace is going to be executed soon after the store that requires invalidation. However, a typical

execution may contain many JIT-compiled traces, each of which have sub-traces that need to be
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checked for invalidations. These sub-traces will not be executed in the near future, so these entries

can be checked asynchronously. We use the helper processor from Figure 7.6 to perform these

invalidation checks. The store addresses performed by the main processor are forwarded to the

helper processor using the memory request/response snooping network. The helper processor, just

like in profiling, uses software to check against any matches with addresses read in sub-traces. The

software can be conservative: it is always a valid execution to conservatively invalidate an entry.

Not skipping the sub-trace body will only cause a minimal performance degradation compared to

executing the operations in the original (before recompilation) trace.

While checking for invalidations in the sub-traces in other traces can be handled asynchronously,

it is much more timing critical to check the sub-traces that belong to the currently executing trace.

Because of this, we propose using a special hardware unit called the SST Synchronous Invalidation

Engine (SSIE) to check for matches. SSIE is attached to the memory request bus, just like the

memory request/response snooping network. It consists of a number of equality checkers and

Bloom filters [Blo70]. The equality checkers are used to check the store address against either an

exact load address from the sub-trace or a range of addresses. Equality checkers can also be used

as pre-filters to the Bloom filters, reducing the false positive rate. In the sub-trace tracing mode,

the marked load addresses will be inserted into the available equality checkers and Bloom filters

on a first-come first-served basis. The general approach in assigning these units is to first check if

the new address already matches one of the equality checkers or Bloom filters, and if so, use those

units. If not, and if there are equality checkers that have not yet been assigned to any entry, then add

the address to that equality checker. If there are no equality checkers available, pick a Bloom filter

using a round-robin basis and add this address into that Bloom filter. SSIE also contains an entry

table (ET) indexed by the equality checker and Bloom filter ID, which returns the corresponding

sub-trace entry address (STEA). In case any of these units find a match when checking a store,

they will do a lookup in the ET, and find the corresponding STEA. To invalidate these sub-trace

entries, both the helper processor and SSIE write zero to the PC field of the sub-trace entry using

the memory request bypass channel.
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7.4 Evaluation

In this section, we describe the methodology for evaluating sub-trace skipping. We then show the

results in terms of dynamic instruction reduction in JIT-compiled regions, whole program analysis,

and various sensitivity studies. We finally describe a prototype chip taped out in a TSMC 28nm

process.

7.4.1 Methodology

We evaluated sub-trace skipping in the context of the RPython framework described in Chapter 2.

In RPython, we implemented a mechanism to encode the object dereferences using an in-memory

representation. We allocate the per-trace profiling region in the virtual memory system, as described

in Section 7.3.1. We also implemented recompilation as an additional optimization pass at the end

of the optimization pipeline. We implemented a number of different sub-trace growing algorithms

as described in 7.3.2. We also made changes to the instruction generation and register allocation

parts of the compiler backend. The RPython register allocator only works with linear traces, so it

does not support basic block merge points. From the perspective of code generation, sub-traces look

like a conditional jump, so sub-traces require a register allocator that can handle basic block merge

points. We modified the register allocator to allow reasonable sub-trace register allocation with as

few spills as possible. In the instruction generator, we encoded the SST instruction using an x86

NOP instruction. Because the usual x86 addressing modes can be used with the NOP instruction, and

the address values for a NOP are normally ignored by the processor, we used the additional bits in

the address to encode the register operands, the destination register, and the offset.

An important design goal of meta-tracing JITs is to provide a common JIT infrastructure

across multiple frontend languages. By targeting meta-tracing JIT VMs, sub-trace skipping can

accelerate multiple programming languages. To illustrate this, we evaluate SST on VMs for two

different dynamic languages: Python and Racket. The VMs for these languages, PyPy [RP06] and

Pycket [BBH

+
15] respectively, are written using the RPython language and make use of RPython

meta-tracing JIT compiler. As Chapter 6 shows, PyPy is the fastest implementation of Python and

Pycket is on par in terms of performance with the reference JIT-optimized VM for Racket.

We use Pin [LCM

+
05] to model the SST hardware and helper processor. Our modified JIT

runtime communicates the address of the profile region to the functional model using a NOP
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Core 1 x86 OOO core at 2.4GHz

L1I cache 32KB, 4-way, LRU, 3-cycle latency

L1D cache 32KB, 8-way, LRU, 4-cycle latency

L2 cache 256KB, 8-way, LRU, 10-cycle latency

L3 cache 8MB, 16-way, LRU, 4 banks, 46-cycle latency

DRAM DDR3-1333-CL10, 40-cycle controller latency

Table 7.2: ZSim Microarchitectural Parameters

instruction. The modeled helper processor software tracks object dereference instructions that

originate from the JIT-compiled code for value patterns. Once a per-trace trip count has been

reached, the model populates the profile region with ODL information and triggers a recompilation.

We also model the semantics of the SST instructions in Pin, as explained in Section 7.3.3. We

model three different configurations for SSIE: ideal (SST-I), 1-Bloom-Filter SSIE (SST-b1), and

8-Bloom-Filter SSIE (SST-b8). With our Pin-based methodology, we can retrieve statistics for

dynamic instructions in various parts of the VM execution (similar to the methodology presented in

Chapter 6) and SST hardware performance counters. As the SST technique targets the JIT-compiled

code, we focus on dynamic instruction count reduction while executing JIT-compiled code.

In addition, we use ZSim to model the microarchitectural performance of SST [SK13]. In

addition to the functional changes described above, we also had to modify ZSim to model the SST

instructions. A Pin basic block is a single-entry-single-exit code unit. Thus, if a basic block runs,

then all instructions that belong to it are executed. ZSim leverages this by simulating at basic block

granularity. It records loads and stores within a basic block of native execution, and then ZSim

uses this information to drive the timing models. However, since we overloaded NOP instructions to

encode the SST instruction, to model skipping over the sub-trace, we re-steer the execution path

using Pin in the middle of a basic block. Thus, only part of this basic block instrumented by ZSim

runs, as Pin discards the original basic block and creates a new one in such cases. In order to

cope with this, we break basic blocks into sub-blocks after each SST instruction. We also treat SST

instruction as a conditional branch, so we can re-use the existing misprediction penalty calculating

mechanism in ZSim to model it as a control instruction. The microarchitectural parameters we have

used for ZSim are shown in Figure 7.2.

We use a subset of benchmarks from two suites: the PyPy Benchmark Suite [pypb] and the

Computer Languages Benchmarks Game (CLBG) [Gou] to evaluate our technique. Both of these

benchmark suites have benchmarks for the Python language, and CLBG also contains Racket
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Figure 7.14: Speedup in JIT-Compiled regions for SST-I in Dynamic Instructions – The benchmarks that start

with rkt: are the Racket programs, remaining are Python programs.

Figure 7.15: Percentage of Skipped Sub-Traces – The benchmarks that start with rkt: are the Racket programs,

remaining are Python programs.

benchmarks. Benchmarks such as django (a web template framework), html5lib, chameleon,

and json_bench are web-flavored non-numerical real-world benchmarks that are generally repre-

sentative of popular Python workloads.

7.4.2 Reduction in Dynamic Instructions in JIT-Compiled Regions

The goal of the sub-trace skipping technique is to reduce the dynamic instruction count in

JIT-compiled traces. This section presents the results of these reductions. However, Chapter 6

shows that non-JIT-compiled regions can dominate the execution time for some of the benchmarks.
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Benchmark NR JDI SST-I JDI Speedup # STs # LU # Skip # Inv # STEs

fasta 131M 96.5M 1.36 133 7.26M 6.40M 813K 850K

mandelbrot 7.13B 5.27B 1.35 67 58.1M 50.4M 7.28M 7.76M

nbody 156M 107M 1.46 150 8.56M 8.46M 526 50.2K

pidigits 8.05M 7.92M 1.02 85 49.4K 37.5K 10.7K 11.9K

spectralnorm 1.65B 1.41B 1.17 54 393K 331K 49.3K 61.5K

Table 7.3: Racket VM performance – Dynamic instructions in the JIT-compiled region (JDI) and speedup in the

JIT-compiled region for the no-recompile (NR) and ideal sub-trace skipping (SST-I) configurations. SST statistics

for the SST-I configuration: # STs = number of sub-traces, # LU = number of sub-trace lookups, # Skip = number of

sub-trace skipped, # Inv = number of sub-trace entries invalidated, # STEs = number of sub-trace entries.

Furthermore, recompilation induces additional execution overhead, which are not captured in results

in this section. We evaluate those overheads in Section 7.4.3.

Figure 7.14 shows the speedup of the SST-I configuration in the JIT-compiled region compared

to the no-recompile baseline. The benchmarks that have rkt: in front of their names are the Racket-

language benchmarks running on Pycket. The remaining are Python programs running on PyPy.

With the exception of two benchmarks, fib and gcbench, all other applications have reductions

in dynamic instructions. While the speedup due to dynamic instruction reduction in many of the

Python benchmarks is only a few percent, there are also many benchmarks, including chameleon,

django, html5lib, and telco, that have speedups of around 10%. A few benchmarks show even

higher speedup, such as richards and spectralnorm, with more than 35% improvement. Also

worth noting is the Racket benchmarks such as rkt:fasta, rkt:mandelbrot, and rkt:nbody see

even larger improvements. Table 7.3 shows additional statistics for these Racket benchmarks. It

is possible that the reason Racket benchmarks have more benefit is because Pycket is not as well

optimized, so our hardware might have a more significant impact on such interpreters.

fib and gcbench perform especially poorly on SST, because these benchmarks are control-flow

intensive. These applications do not have clearly defined loops, so the tracing-JIT traces different

control flow paths arbitrarily. Because of this, we see that pathological paths can be traced when

enabling recompilation. Future work may look into improving the behavior of these pathological

control-flow intensive benchmarks.

We also present how often SSTs are skipped over (see Figure 7.15). The data shows a very

wide range of skip rates. The sub-trace skipping percentages do not seem to directly correlate

with the speedup in the JIT-compiled regions. However, it shows that there might be room for
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Baseline NR RO SST-I SST-b8 SST-b1

Benchmark JDI JC DI C JDI JC DI C JDI JC DI C JDI JC DI C JDI JC DI C JDI JC DI C

ai 9.2 9.9 15.7 16.3 9.3 10.0 15.9 16.4 9.9 12.1 16.7 19.7 9.0 11.7 15.8 19.4 9.2 11.8 15.9 19.5 9.2 11.9 16.0 19.5

django 5.4 6.7 16.2 16.9 5.6 6.8 16.7 17.3 5.9 7.9 17.4 20.3 5.0 7.5 16.5 19.9 5.0 7.4 16.5 19.8 5.6 7.7 17.1 20.1

fasta 11.2 11.7 16.0 16.1 11.6 11.7 16.4 16.1 10.1 12.9 15.0 17.6 9.1 12.4 14.0 17.4 9.1 12.4 14.0 17.4 9.2 12.5 14.1 17.3

nbody 7.8 7.4 15.1 14.3 7.9 7.3 15.2 14.3 7.9 7.4 15.3 15.1 7.1 7.4 14.5 14.7 7.1 7.4 14.5 14.7 7.2 7.7 14.6 14.9

richards 14.3 11.6 15.8 13.2 14.9 11.9 16.6 13.7 14.8 12.8 17.6 15.5 11.0 11.7 13.7 14.4 11.6 11.7 14.3 14.4 12.4 12.3 15.2 15.0

spectralnorm 13.3 10.7 15.4 13.6 14.2 10.8 16.4 13.7 14.4 12.0 16.8 15.2 13.5 11.7 15.8 14.9 13.5 11.7 15.8 14.9

telco 6.4 10.0 15.0 19.0 8.5 13.4 17.6 23.3 8.9 16.2 18.8 27.8 8.0 15.2 17.8 27.0 8.0 15.2 17.9 27.0 8.3 15.6 18.2 27.4

Table 7.4: Python VM Performance – Dynamic instructions (JDI) and cycles (JC) in the JIT-compiled region, dynamic

instructions (DI) and cycles (C) in the entire execution for baseline Pypy (Baseline), no-recompile (NR), recompile

only but no-skipping (RO), ideal sub-trace skipping (SST-I), realistic sub-trace skipping with 8 equality checkers and

1 512-bit bloom filter (SST-b1), and realistic sub-trace skipping with 8 512-bit bloom filters (SST-b8). All dynamic

instructions and cycles countings are in billions. The SST-I configuration for spectralnorm did not finish due to a

simulation issue.

improvement in the profiling algorithm for more accurate ODL detection. In some benchmarks,

such as pidigits, a high percentage of the object dereferences that the profiler identifies to have

locality turn out not to do so later in the algorithm. Future work may look at improving the profiling

to improve the percentage of skipped sub-traces.

7.4.3 Whole-Program Analysis

While the SST technique improves the dynamic instruction count in the JIT-compiled regions,

the VM also has to perform additional work to recompile traces. To characterize these overheads

and evaluate how long a benchmark has to run in order to amortize the cost of recompilation and

benefit from SST, we ran a few of the benchmarks for more than 15 billion dynamic instructions (a

few seconds of simulated time). Table 7.4 shows the results of these runs. We also evaluated these

runs on the ideal SSIE (SST-I) and more realistic 1- and 8-Bloom-filter SSIE configurations. We

compare these simulations to three different baseline configurations. The first baseline configuration

is PyPy with our changes disabled. The no-recompile (NR) configuration adds a recompilation

guard to the traces. However, we configure Pin not to recompile in this setting. Recompile-only (RO)

configuration only performs profiling and recompilation, but actually does not skip the sub-traces.

These results show that the dynamic instructions in the JIT-compiled region (the JDI columns)

is better compared to the baseline configuration using an ideal SSIE, with the exception of one

benchmark. We can also see that the NR and RO configurations have non-trivial overheads
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Benchmark # STs # LU #Skip #Inv #STEs
ai-SST-I 250 502M 272M 227M 227M

ai-SST-b1 250 502M 220M 179M 179M

ai-SST-b8 250 502M 228M 152M 152M

django-SST-I 298 272M 232M 34M 35M

django-SST-b1 298 272M 94M 515K 515K

django-SST-b8 298 272M 229M 2M 2M

fasta-SST-I 56 279M 277M 2M 2M

fasta-SST-b1 56 279M 252M 5M 5M

fasta-SST-b8 56 279M 275M 2M 2M

nbody-SST-I 44 284M 281M 4M 4M

nbody-SST-b1 44 284M 281M 18K 18K

nbody-SST-b8 44 284M 281M 199 314

richards-SST-I 598 1237M 973M 124M 124M

richards-SST-b1 598 1237M 616M 6M 6M

richards-SST-b8 598 1237M 864M 16M 16M

spectralnorm-SST-I

spectralnorm-SST-b1 43 546M 298M 39K 39K

spectralnorm-SST-b8 43 546M 298M 41K 41K

Table 7.5: Python VM SST Statistics – # STs = number of sub-traces, # LU = number of sub-trace lookups, # Skip =

number of sub-trace skipped, # Inv = number of sub-trace entries invalidated, # STEs = number of sub-trace entries.

The SST-I configuration for spectralnorm did not finish due to a simulation issue.

compared to the baseline in the JIT-compiled region. These overheads are due to the additional

recompile guards (for NR) and slightly worse instruction generation and register allocation (for RO).

The dynamic instruction counts for the overall execution (the DI columns) show that half of the

benchmarks perform better with an ideal SSIE compared to the baseline. This means that for these

benchmarks, the break-even point to amortize the additional recompilation overhead is reached

within a few seconds. For workloads that can be expected to run a long time (e.g., server workloads),

this is promising. However, we observe a slowdown when we look at the total cycle count (the C

columns). Even more surprising is that the NR baseline also has up to 20% slowdown in terms of

cycles compared the baseline with no recompile checks even though the dynamic instruction count

is similar. This might be an artifact of how we check and perform recompilations, and future work

may explore techniques to improve this overhead.

Comparing different SSIE configurations, we see that the performance of SST-b1 is actually

similar to both the ideal configuration and SST-b8. This indicates that the additional hardware

requirements can be kept at a minimum and achieve similar performance as an ideal SSIE. Table 7.5
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Figure 7.16: Skip Rate Percentage Compared to SST-I (No Asynchronous Checking) – For a selection of SSIE

configurations, running richards (number of equality checkers/number of Bloom filters/Bloom filter size in 2

N
).

Figure 7.17: Skip Rate Percentage Compared to SST-I (With Asynchronous Checking) – For a selection of SSIE

configurations, running richards (number of equality checkers/number of Bloom filters/Bloom filter size in 2

N
).

shows the SST statistics of these benchmarks with different SSIE configurations. Using SST-b1

configuration can reduce both the number of sub-trace entries and the number of invalidations while

achieving similar overall performance benefits in the JIT-compiled region.

7.4.4 SSIE Sweep Case Study

We explore the impact of the SSIE microarchitecture on the sub-trace skipping rates. Figure 7.16

shows a sweep of the SSIE architectures without an additional helper processor to do different-trace

checking. We see that the skip rates are quite low in this configuration unless the number of Bloom

filters and equality checkers are increased to substantial amounts. To get 60% hit rate, it is necessary

to use 16 Bloom filters, and 16 additional equality checkers. However, if we use a helper processor

to check for non-critical addresses, it is possible to drastically reduce the pressure on the SSIE (see

Figure 7.17). In this configuration, it is possible to get to 70% of the skip rate of an ideal SSIE with

a single 512-bit Bloom filter and 8 additional checkers. So, the asynchronous invalidation checking
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Figure 7.18: 512-bit Bloom Filter False Positive Rates – Shows a sweep of how many items the Bloom filter contains

and the false positive rate for different number of hash functions.

using a helper processor is necessary to keep the additional area requirements low while skip rates

high. The SST-b1 and SST-b8 designs use 512-bit Bloom filters.

Bloom filters operate by using a number of hash functions and setting or checking the bits

indexed by these hashes. The number of hash functions and how many items have already been

inserted to the Bloom filter affect the false positive rate of the Bloom filter. Figure 7.18 shows

a sweep of the number of items inserted to a 512-bit Bloom filter and the false positive rates for

a sweep for the number of hash functions. For example, a 2-hash-function Bloom filter that has

already 64 items inserted has 5.4% of the searches for items that are not in the Bloom filter are

falsely identified as contained in the filter, whereas the false positive rate drops to 3.5% and 3.1%

for 3 and 4 hash functions respectively. We find that a 4-hash-function 512-bit Bloom filter is a

good balance of area overhead and false positive rates.

7.4.5 Recompile Options Case Study

As Section 7.3.2 has shown, there is a rich design space in growing sub-traces. Table 7.6 shows

the statistics of different recompile options. We evaluate three options, s = whether additional pure

operations can be added to the sub-trace that does not use the output of the dereference but instead

uses the input value, n = whether additional pure operations can be added that requires the addition

of a new input, and c = whether multiple dereferences can be included in the sub-trace in a chained
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Benchmark RO SST-I JDI # STs # LU # Skip # Inv

ai 497M 140 17.6M 12.3M 5.29M

ai s 499M 144 19.9M 12.3M 7.52M

ai sn 497M 181 27.6M 15.0M 12.3M

ai c 510M 232 27.7M 13.3M 13.4M

ai cs 509M 224 27.8M 10.7M 15.8M

ai csn 511M 227 28.0M 6.68M 19.9M

django 144M 227 6.48M 6.39M 13.7K

django s 144M 229 6.61M 6.53M 13.7K

django sn 141M 188 5.89M 4.46M 1.27M

django c 145M 253 7.89M 6.73M 967K

django cs 141M 191 5.49M 5.41M 14K

django csn 139M 177 5.16M 5.07M 17K

fasta 200M 47 4.88M 4.86M 27.7K

fasta s 200M 47 4.88M 4.86M 27.7K

fasta sn 194M 58 7.37M 6.98M 157K

fasta c 198M 61 7.82M 7.79M 27.9K

fasta cs 197M 53 6.79M 6.05M 723K

fasta csn 189M 49 8.42M 7.33M 852K

rkt:fasta 94M 122 6.38M 6.31M 68.2K

rkt:fasta s 94M 122 6.38M 6.31M 68.2K

rkt:fasta sn 96M 133 7.26M 6.40M 813K

rkt:fasta c 92M 138 6.32M 6.22M 101K

rkt:fasta cs 90M 151 6.04M 5.94M 97.4K

rkt:fasta csn 95M 158 6.65M 4.93M 1.63

richards 193M 520 20.2M 15.7M 2.28M

richards s 193M 520 20.2M 15.7M 2.28M

richards sn 193M 568 21.1M 16.6M 2.25M

richards c 197M 505 17.5M 12.9M 2.16M

richards cs 206M 431 14.1M 8.61M 2.98M

richards csn 206M 420 14.0M 8.50M 2.95M

telco 1.09B 516 32.2M 31.2M 1.04M

telco s 1.09B 516 32.2M 31.2M 1.04M

telco sn 1.08B 577 35.7M 34.0M 1.60M

telco c 1.08B 499 30.1M 29.1M 987K

telco cs 1.07B 392 27.5M 26.2M 1.34M

telco csn 1.07B 458 31.0M 26.5M 4.49M

Table 7.6: Impact of Recompilation Options – RO = recompile options (s: share input, n: new input, c: chained

loads); JDI = number of dynamic instructions in JIT; # LU = number of sub-trace lookups; # Skip = number of sub-trace

skips; # Inv = number of sub-trace entries invalidated.
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Figure 7.19: Layout of BRGTC2 – The Batten Research Group Test Chip 2 (BRGTC2) was produced using TSMC

28nm process. The chip contains a prototype Bloom filter accelerator similar to the proposed SSIE.

fashion. Interestingly, we see that there is no single setting that performs the best. For the most

benchmarks, sn performs consistently well, but in a few benchmarks, csn and cs outperform sn. The

important insight is that as sub-traces grow, more instructions can be skipped, which is good for

performance. However, if any of the loads in the SST are invalidated, the entire sub-trace entry

would need to be invalidated as well. So we observe that the more aggressive sub-trace growing

algorithms tend to suffer more from invalidations due to this effect.

7.4.6 Prototype Chip Tapeout and Area Analysis

To evaluate the timing and area overhead of SSIE, we have implemented a parametrizable

Bloom filter design in RTL. This Bloom filter uses a parametrizable number of bits for storage and

hash functions implemented using constant-value multiplication. The constant-value multiplication

technique performs a multiplication with a constant prime number, which is converted to efficient

constant-value shifts and adders during logic synthesis. This design is similar to the one proposed

by Lyons and Brooks [LB09], and we did not observe a significant difference in false positive rate

compared to using cryptographic hash functions.
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Component Area (µm2) Percent

Entire design 388,700 100.0

Instruction cache (32KB) 131,916 33.9

Data cache (32KB) 130,774 33.6

Processors (4⇥) 44,097 11.3

Host interface 35,238 9.1

Bloom filter accelerator (4⇥ 256-bit, 3-hash) 19,767 5.1

Shared FPU (1⇥) 11,291 2.9

L0 instruction cache 6,618 1.7

Shared Multiply/Divide Unit (1⇥) 4,874 1.3

Control Registers 1,930 0.5

Network 1,280 0.3

Table 7.7: BRGTC2 Area Breakdown

# Bits # Hash functions Area (µm2)

256 1 3081

256 2 4042

256 3 5005

256 4 6105

512 2 5319

512 3 6601

512 4 7835

1024 2 7794

1024 3 9792

1024 4 11908

1024 5 14038

Table 7.8: Bloom Filter Area Sweep – Shows various Bloom filter configurations synthesized using TSMC 28nm

process and 1ns clock period.

In Spring 2018, our group built the Batten Research Group Test Chip 2 (BRGTC2) that in-

corporated a number of techniques from ongoing projects, including a prototype Bloom filter

accelerator [TJAH

+
18]. We designed this chip using PyMTL [LZB14, JIB18] in a TSMC 28nm

process, with a maximum clock frequency of 500MHz. The chip includes four in-order scalar

processor cores that make use of the sharing architecture [Sri18], where the caches, multiply/divide

unit, and the FPU are shared among the cores. We attached four 256-bit, 3-hash Bloom filter

accelerators to snoop the memory request buses for each core. The processors can use an accelerator

interface and specialized instructions to insert entries, search, reset, and configure the Bloom filter
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to snoop memory reads, writes, or both. Figure 7.19 shows the annotated layout of the taped-out

chip, and Table 7.7 shows the area breakdown.

The area of the Bloom filter accelerator shows that four small Bloom filters only occupy 5% of

a very small chip area, where each accelerator is roughly equal in size to a 32-bit iterative integer

multiply/divide unit. We have further synthesized other Bloom filter accelerator designs using the

same process, for 1GHz clock target, as seen in Table 7.8. Both the number of Bloom filter bits and

the number of hash functions affect the area, and the area overhead of an additional hash function

roughly doubles going from a 256-bit to a 1024-bit Bloom filter. The 512-bit 4-hash Bloom filter

that SST proposes is less than 8000 µm

2

, which is a very modest area overhead of around 70% of

an FPU.

7.5 Related Work

Polymorphic inline caches [HCU91] can be seen as the most direct pure-software equivalent

of subtrace skipping. It is used only to speed up the lookup of methods at the method call site,

by keeping a small cache directly in the generated machine code. The cache contains of pairs of

precise receiver types and called methods. Every time a call to an unknown receiver type is seen at

a call site, a slow method lookup is performed, and a new pair of that receiver type and the found

method is added to the cache. When a method is re-defined, the pairs need to be removed from

all affected method call sites, which is all done purely in software with a write barrier specific to

method redefinitions. This technique is useful, but only used specifically for method lookups, not

for other sources of value locality, due to the cost and complexity of the related write barrier.

Relatedly, a lot of powerful JIT optimization approaches optimize the generated machine code

based on an interpreter-level assumption and will have to invalidate the generated code once the

assumption is broken later. A typical example is Java Virtual Machines assuming that class loading

is rare, and thus optimizing based on a whole world assumption [SBC00]. If later a subclass of

an existing class is loaded, generated machine code that assumed that some method did not have

any overrides will have to be deoptimized [HCU92]. This approach only works when the write

barrier that is needed to detect situations where deoptimizations might be necessary only need to be

applied to a tiny percentage of objects (for example classes) and not to arbitrary memory locations.

Furthermore, unlike the SST technique, the interpreter has to hard-code these assumption heuristics,
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which can be cumbersome. On the other hand, an advantage of pure software approaches is that

deoptimization conditions can be arbitrarily complex, for example to check whether the content of a

complicated hashmap changed.

There have been a number of proposals to use software/hardware co-design to improve the

performance of dynamic languages. Three prior work are the closest proposals sub-trace skipping:

Checked Loads proposes ISA extensions for JIT-compiled code to perform loads and type checks at

the same time [AFCE11]; ShortCut proposes an ISA extension to more efficiently perform type

dispatch [CSGT17]; and Dot et al. propose a scheme to remove monomorphic class checks altogether

using profiling [DMG17]. All three of these techniques specifically target certain scenarios of class

checks, however sub-trace skipping is more general and can identify class check opportunities in

addition to other object dereference localities. Furthermore, Dot et al. use software profiling (which

can introduce overheads) in mid-tier JIT compilation (not final-tier) to discover monomorphic types,

whereas sub-trace skipping uses asynchronous no-overhead profiling that can work at final-tier

JIT-compiled code. Checked Loads and ShortCut do not use profiling to identify the patterns to

optimize.

Other prior work on software/hardware co-design includes changes to the memory system for

more efficient dynamic memory management [TGS18], hardware support for faster deoptimiza-

tions [SCGT19], hardware acceleration of garbage collection [CTW05,MAK18, TIW11, Mey06,

HTCU10,JMP09], and techniques to accelerate the interpreter only [MO98,Por05,KKK

+
17,RSS15],

and custom hardware accelerators for parts of the VM functionality [GSL17]. Many of these tech-

niques are orthogonal to sub-trace skipping.

Value prediction [GM98] and instruction reuse [SS97,YG00] have been proposed to exploit data

locality. Value prediction predicts the output of an instruction by tracking its history outputs, and

speculatively pass this predicted value to later instructions. This instruction will still be executed and

the predicted value is checked against the actual output. If there is a midprediction, the processor

needs to squash and restart. Unlike value prediction, instruction reuse is a non-speculative method.

It stores inputs and outputs of an instruction into hardware tables. During fetching, the actual inputs

are compared with known ones. If there is a match, stored outputs will be written to destinations and

this instruction is ready to commit. Later proposals [HL99,GTM99] extended the idea of instruction

reuse to basic block and trace granularity. Unlike previous works, which rely on the hardware to

discover and exploit data locality, our technique leverages a software/hardware hybrid method with
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asynchronous profiling and software recompiling. We only use hardware for time critial tasks such

as SST look ups and store-protection.

7.6 Conclusion

We have presented skippable sub-traces, which is a software/hardware co-design technique to

exploit load-value locality in object dereferences, in tracing-JIT VMs for dynamic languages. We

present a characterization of this locality in the context of RPython meta-tracing JIT VM framework.

We propose the SST technique consisting of hardware profiling, recompilation, execution, and

invalidation. We evaluate the design and present that the SST design is promising in speeding up the

JIT-compiled region of multiple dynamic languages by up to 40% in terms of dynamic instructions.

However, we also highlight that this technique can have non-trivial overheads and the performance

gains might be offset by these overheads. We have also successfully taped out a chip in TSMC

28nm process to prototype some of the techniques presented in this chapter.
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CHAPTER 8

CONCLUSION

This thesis presented co-optimizing hardware design and meta-tracing JIT VMs from two angles:

accelerating hardware simulations using meta-tracing JIT VMs and building hardware accelerators

for meta-tracing JIT VMs. As Moore’s Law slows down, it creates an urgent need for agile hardware

design methodologies and acceleration techniques for dynamic languages. Both of these challenges

can be addressed using approaches similar to those presented in this thesis.

8.1 Thesis Summary and Contributions

This thesis began by motivating the need for new agile hardware design methodologies. As

Moore’s Law and single-threaded performance improvements slow down, in order to address

computational challenges of the future, a more wide-spread use of domain specific hardware is

needed. Relatedly, there is a need for new execution mechanisms beyond software-only techniques

for dynamic-language JIT VMs. These two needs form the basis of the two parts of this thesis.

Then I provided an extensive background on dynamic languages, just-in-time compilation, classical

JIT optimization techniques, and two new approaches that allow more productive development

of JIT VMs for new dynamic languages: partial evaluation and meta-tracing. Meta-tracing JIT

VMs form an important theme for this thesis. Meta-tracing JIT VMs and agile hardware design

can be used to address the two needs mentioned earlier. While focusing on partial evaluation

instead of meta-tracing could have also been an interesting direction, some of the reasons to choose

meta-tracing include the easier use compared to partial evaluation, and the fact that PyPy, currently

the fastest VM for Python uses the RPython meta-tracing JIT framework.

Part I of this thesis proposed high-performance agile hardware simulation methodologies using

meta-tracing JIT VMs. I explored opportunities and challenges in each of functional level, cycle

level, and register-transfer level modeling. In each of these challenges, the meta-tracing JIT

compilation technology can be repurposed to yield very high performance simulators, often as fast

as, and sometimes faster than, purpose-built frameworks that take many programmer-decades to

develop. Furthermore, the techniques proposed in this part also increase developer productivity and

agility, by enabling greater flexibility in modifying ISAs, easier design space exploration, taking

advantage of highly parameterized designs, and better testing.
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Part II of this thesis explored opportunities to use a software/hardware co-design approach to

improve the performance of meta-tracing JIT VMs. I initially performed an extensive cross-layer

workload characterization of the RPython framework for two different interpreters: Python and

Racket. While I did not identify a silver bullet that will magically improve the performance by

orders of magnitude, there are many smaller sub-problems that can be improved for parts of the

execution. One promising avenue is that object dereferences in JIT-compiled traces can often have

value locality: the same load address and loaded data are encountered while executing the load

throughout the execution. Using this insight, I proposed a software/hardware co-design technique

of identifying object dereference locality, recompiling these traces to allow sub-trace skipping, and

skipping these sub-traces with object dereferences if hardware can guarantee that it is safe to do so.

To reiterate the major contributions of this thesis:

• I demonstrated meta-tracing JIT VMs can be used to speed up agile FL simulation of proces-

sors.

• I extended agile FL simulation using JIT fast-forward embedding and instrumentation for

sampling-based agile CL simulation of computer systems.

• I presented JIT-aware hardware generation and simulation framework (HGSF) and HGSF-

aware JIT mechanisms for accelerating agile RTL hardware simulations using meta-tracing

JIT VMs.

• I presented a novel methodology to study meta-tracing JIT VMs and allow experimenting

with hardware acceleration techniques.

• I performed an extensive cross-layer workload characterization of meta-tracing JIT VMs.

• I identified and quantized object dereference locality (ODL) and intermediate-representation-

level value locality (IVL) in JIT-compiled code in the context of meta-tracing JIT VMs.

• I proposed a software/hardware co-design approach to exploit ODL and IVL.

8.2 Future Work

Application-level architectural descriptions in Pydgin – Pydgin allows a pseudo-code-like

interface by using the RPython language as the embedded DSL to describe ISAs. This approach en-

abled us to take advantage of high-performance JIT compilation while retaining simple architecture
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descriptions. However, one drawback of this approach are the translation times. RPython needs to

perform whole-program analysis of the VM to determine all of the types, which can take more than

an hour for the Python interpreter and fifteen minutes for Pydgin. The length of translation times

can seriously hinder quick iteration when there are changes in the ISA specification. As a future

work, mechanisms shorten this iteration loop could be explored. One possible direction is to use

the high-performance mixed-language JIT capability of the RPython framework. Pydgin can be

implemented as a Python module, and this combined interpreter can then be translated. Any guest

instruction that is supported by Pydgin directly will be able to achieve Pydgin levels of performance.

New instructions can be described at the application level in Python, and the JIT-optimized Python

interpreter can execute those semantics. Pydgin can further expose a high-performance API to the

application level, similar to HGSF-aware JIT approach we used for the Mamba project. The instruc-

tions that are described at the application level will likely be slower than Pydgin-level descriptions.

However, once they are mature, these new instruction semantics can eventually be migrated into

RPython, taking full advantage of the meta-tracing JIT compiler.

Host pages in Pydgin – A source of inefficiency in Pydgin is the memory representation. The

work presented in Chapter 3 does not model a memory management unit (MMU). The memory

is represented as a large RPython list, and there is no address translation necessary. While this

approach is fast, the memory usage by the simulator can be significant, regardless of the memory

needs of the application. The version of Pydgin that has self-modifying code support models an

MMU just for invalidation purposes. Adding full MMU support to Pydgin unfortunately would

slow the performance down significantly. As a solution to this problem, Pydgin can directly map

guest pages to host pages as long as page sizes align. The page permissions could properly be set so

that self modifying code can be efficiently executed. This approach is used by QEMU [Bel05].

Unify gem5 architectural descriptions in PydginFF – While PydginFF, presented in Chap-

ter 4, can allow fast, accurate, and agile cycle-level simulation, one drawback is the multiple

architectural descriptions. gem5 has its own DSL for describing instruction sets, while Pydgin uses

a DSL embedded in the RPython language. This unfortunately creates two separate places where

changes would need to be implemented. Future work could focus on unifying these architectural de-

scriptions. One approach would be to implement a translation pass that converts gem5’s descriptions

into Pydgin’s representation. Similarly, an opposite tool could be implemented to convert Pydgin’s

representation into gem5’s. Another approach would be to use Pydgin for all functional-level
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modeling, even during detailed simulation. The idea is to deeply integrate Pydgin into gem5, and

have Pydgin drive various aspects of cycle-level components (e.g, memories, networks, etc.).

Support for SimJIT in Mamba for longer simulations – Mamba, presented in Chapter 5,

demonstrates that meta-tracing JIT VMs can speed up RTL simulations, approaching the perfor-

mance of commercial Verilog simulators. However, Verilator can be an order of magnitude faster

in peak performance than commercial Verilog simulators, and hence from Mamba. Verilator has

a long compilation process, which hurts the performance of short-running simulations. On the

other hand, the Mamba techniques are compelling for simulations that require fast warmup. Future

work for Mamba could combine the best of both worlds: use the Mamba techniques initially, and if

the simulation time passes a certain threshold, use PyMTL’s SimJIT technique of translating the

simulation to Verilog and use Verilator for the rest of simulation [LZB14].

Hybrid event-driven and static scheduling support in Mamba – A similar performance

discrepancy in Mamba is seen in activity factors. Static scheduling is a key enabler of performance

improvements in Mamba using meta-tracing JIT VMs. Static schedules are significantly more

amenable for tracing JITs for finding longer traces that can be optimized well. However, static

scheduling has the drawback of simulating every component regardless of the amount of activity in

those modules. For modules that are active only in a small percentage of the time still currently

needs to be redundantly simulated every cycle. Event-driven scheduling can eliminate many of these

redundantly performed combinational update block simulations. Future work might investigate the

break-even point where event-driven simulations can outperform static scheduling, and switch to an

event-driven simulation methodology when the simulated module has low activity. Furthermore, a

hybrid of event-driven and static scheduling could be explored, where a number of combinational

update blocks are statically scheduled to superblocks, and each superblock is simulated in an

event-driven fashion.

Predication support in RPython for Mamba performance – A meta-tracing JIT compiler

extracts a linear trace through the execution of the interpreter. Any control flow in the interpreter,

including those due to control flow in the application level, will have only one branch outcome

recorded in the trace. If the alternative control flow path gets taken, another trace would be compiled

and attached to the failing guard. These additional traces can significantly hurt the memory usage

and simulation time. Static scheduling tries to form long traces of execution to allow escape analysis

to optimize away intermediate values. However, the longer the trace is, the more bridges would
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have to be compiled, hurting the execution time and memory usage. Predication support at the

meta-tracing level can be very helpful to reduce the number of bridges. Future work can investigate

introducing predication IR nodes, and expose these to the application level, as an additional HGSF-

aware JIT technique. Many of the control flow operations in the combinational update blocks can

be converted to predication operations, and can further improve the performance of Mamba.

Efficient trace dispatch support in RPython for Mamba performance – When the applica-

tion code contains a branch with many different branch outcomes (e.g., a long if, elif, else

chain), RPython compiles a separate trace for each outcome. However, to dispatch to the correct

trace, a linear search is performed by failing guards and jumping to an alternative bridge until the

bridge with the correct outcome is found. Event-driven RTL simulations typically make use of this

pattern heavily, and this hurts the performance of applications that exhibit this branch pattern. This

was one of the reasons why static scheduling performed much better than event-driven in Mamba.

Future work might explore changes in the RPython framework to perform the trace dispatch more

efficiently. For example, a hash map can be used to find the correct bridge, which would have an

amortized constant time overhead as opposed to the linear time search.

Combine Pydgin with PyMTL – The first part of this thesis showed that meta-tracing JIT VMs

can be useful in accelerating agile hardware simulations across FL, CL, and RTL models. However,

the Pydgin and Mamba codebases are currently separate, so they cannot be used together. A unified

framework can allow high performance mixed-level modeling across all three of FL, CL, and RTL

models. This approach can furthermore allow sampling-based RTL simulation and fast forwarding

using a very fast functional model. Unifying PyMTL and Pydgin is a future work.

Hardware-assisted object allocation removal – The software/hardware co-design technique

presented in Chapter 7 proposed techniques to optimize away dereferences that have value locality

and other pure operations that depend on these dereferences. The mechanism proposed skips over

the sub-traces that contain object dereferences and uses the cached value. Sub-trace skipping is only

possible if there have not been any writes to the addresses that skipped object dereference would

have loaded from. A similar mechanism could be employed to skip sub-traces with new object

allocations. Many newly created objects are likely only read within a trace, and never accessed

outside the trace. These objects can be reused without the need for creating a new one every iteration

of the trace. Future work might explore repurposing the object dereference skipping mechanisms

for new object reuse. To skip sub-traces with allocations, the invalidation engine would need to
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check for read addresses instead of writes, and ensure that the sub-trace is not skipped in case there

has been any reads to that new object.

General purpose hardware mechanisms to exploit object dereference locality – One draw-

back of the proposed hardware mechanisms to exploit object dereference locality is that the addi-

tional hardware and instructions might be too specific for the proposed technique. While dynamic

languages are an important workload, and meta-tracing JIT VMs easily allow multiple dynamic

languages to take advantage of the hardware techniques, more general-purpose hardware techniques

that can accelerate additional workloads would make the proposed hardware more compelling.

Future work might explore techniques that require less extensive changes in the hardware, reuse

more of the commonly found hardware features, or propose hardware additions that can be useful

for workloads beyond dynamic languages, while achieving similar benefits of skipping object

dereferences with locality.

Hardware support for JIT parameter sweep – While exploring different avenues of building

hardware accelerators for meta-tracing JIT VMs, I have observed that some benchmarks have high

degrees of sensitivity to some of the meta-tracing JIT parameters. These parameters allow setting

various thresholds including the number of iterations a loop has to execute to start tracing, the

maximum allowed size of traces, the number of times a guard fails to start compiling a bridge, which

optimization passes are allowed, and so on. In particular, we observed that certain benchmarks

that have complicated control flows can be significantly affected by the parameter that controls

the bridge compilation threshold, with a performance difference more than 2⇥. The stochastic

nature of which traces get compiled is a known problem with tracing JIT compilers. Future work

might explore hardware techniques to address this variation in performance using auto-tuning or by

executing traces compiled with different parameters in parallel, and picking the best performing

one.

Hardware support for tracing – In addition to allowing parameter sweeps using hardware

mentioned above, there could be additional hardware mechanisms to control tracing in a more

systematic way. The stochastic nature of tracing means that pathological traces are very possible.

One approach to address this issue could be to let the VM collect multiple traces and pick the

most efficient and representative of the executed code. Unfortunately, Chapter 6 shows that the

overhead of meta-tracing can be around 100⇥ compared to an interpreter that does not perform

tracing, a significant cost. Future work might explore mechanisms for hardware-accelerated tracing
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that lowers the cost of tracing. If hardware-assisted tracing lowers this overhead, mechanisms

to collect multiple traces and compile most frequent and lest pathological ones can make tracing

much less stochastic and higher performance. This idea is similar to the one presented by Shull et

al. [SCGT19].

Speculative addition of interpreter-level JIT hints – As Chapter 2 shows, the RPython frame-

work provides many interpreter-level JIT hints: constant promotion, elidable functions, quasi-

immutables, and virtualizables. Many of these hints express typical access or value patterns as

predicted by the interpreter writer. For example, constant promotion is used to treat variables that

are typically constant at a particular point in the trace. Using this hint, the JIT compiler inserts a

guard to check if the value is indeed what was recorded in the trace, and specializes the rest of the

trace for the variable being equal to the recorded constant value. Using these hints requires deep

knowledge of tracing, interpreter, and application behavior, and requires the interpreter writer to

make assumptions about common application patterns. However, relying on the interpreter writer

could be limiting: figuring out the most efficient hints make it less productive to use meta-tracing for

new languages, and incorrect or insufficient usage of these hints can hurt performance. Furthermore,

different application phases might perform better with different hints. Future work might explore

hardware support to speculatively adding and removing some of these hints and observing the

performance at each site. Each trace can be recompiled with a slightly different hint. These options

can be executed in parallel, and the best performing one can be chosen for the subsequent usage.

Efficient deoptimizations using hardware transactional memory – Chapter 6 shows that

deoptimizations can be a big source of overhead. Since the stack layouts of an interpreter and JIT-

compiled code are different, the deoptimization step is necessary to safely fall back to the interpreter.

While method JITs typically use on-stack replacement, RPython uses a special interpreter that

executes the JIT IR operations until a safe point is reached to transfer back to the interpreter.

Unfortunately, the performance of this interpreter can be a bottleneck. Future work may explore

different strategies of deoptimizing without the need for a JIT IR interpreter. One idea is to use

hardware transactional memory to execute the JIT-compiled code between the safe points. If there

is any guard failure that necessitates falling back to the interpreter, the work done since the last safe

point can be thrown away, and the execution can cheaply transfer back to the interpreter at the last

committed safe point. Since this approach throws away useful work, a challenge would be to ensure

the overhead of this is less than the current interpreter-based deoptimization approach.
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