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Abstract
Current pipelining approach in high-level synthesis (HLS) achieves
high performance for applications with regular and statically an-
alyzable memory access patterns. However, it cannot effectively
handle infrequent data-dependent structural and data hazards be-
cause they are conservatively assumed to always occur in the syn-
thesized pipeline. To enable high-throughput pipelining of irregular
loops, we study the problem of augmenting HLS with application-
specific dynamic hazard resolution, and examine its implications on
scheduling and quality of results. We propose to generate an aggres-
sive pipeline at compile-time while resolving hazards with memory
port arbitration and squash-and-replay at run-time. Our experiments
targeting a Xilinx FPGA demonstrate promising performance im-
provement across a suite of representative benchmarks.

1. Introduction
Over the past few years, high-level synthesis (HLS) has become
an increasingly popular alternative to traditional register-transfer
level (RTL) designs [4]. HLS automatically generates digital circuits
from a behavioral specification, greatly improving productivity over
the traditional tedious hardware design process. Pipelining is one of
the most widely used optimizations in HLS because it allows suc-
cessive loop iterations (or function invocations) to be overlapped
during execution, effectively exploiting parallelism with fewer re-
sources compared to outright hardware duplication.

Conventional HLS pipelining typically leverages modulo
scheduling [12], a compile-time optimization which creates a static
schedule for a single loop iteration that can be repeated at a fixed ini-
tiation interval (II). The modulo scheduling algorithm analyzes the
program’s control-data flow graph along with resource, data depen-
dence, and other constraints to minimize the II while ensuring that
the pipeline does not encounter hazards during execution. Specifi-
cally, the statically generated schedule must not allow multiple op-
erations to access the same physical resource within a single cy-
cle (structural hazards) and must ensure that dependences between
memory loads and stores are not violated (data hazards). The need
to avoid these two types of hazards on memory accesses often limit
the throughput of the synthesized pipeline.
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1 for (j=0...num_edges){
2 int s = e[j].src;
3 int d = e[j].dst;
4
5 if (v[s]<0 && v[d]<0){
6 v[s] = d;
7 v[d] = s;
8 }}

Cycle
0 e[j].load (line 2/3)
1 v[s].load (line 5)
2 v[d].load (line 5)
3 v[s].store (line 6)
4 v[d].store (line 7)

(a) Source code. (b) Schedule for one iteration.

Figure 1: Maximal Matching example — (a) Source code in C-like
syntax. (b) Static schedule produced by conventional HLS pipelin-
ing with II=4. Only load and store operations are shown while
others (e.g., comparisons) are omitted.

HLS pipelining makes extensive use of memory dependence and
alias analysis to identify dependences and disambiguate memory ac-
cesses (for convenience, we use dependence and alias analysis in-
terchangeably in subsequent discussions). Such techniques attempt
to classify each pair of memory accesses as no-alias or must-alias
if the analysis is conclusive, or may-alias if the analysis is incon-
clusive. Static alias analysis is able to return fairly accurate depen-
dence information for programs with compile-time analyzable con-
trol flow and highly regular memory access patterns, allowing effi-
cient pipeline schedules to be created. However, such static analysis
techniques are ineffective against programs that contain conditional
and/or data-dependent memory operations with memory addresses
unknown at compile-time, making it difficult to prove the absence of
aliases. As a result, the dependence information will be inexact and
contains may-alias pairs that have to be treated as must-alias by the
scheduler to ensure hazard-free execution under all circumstances.

While existing pipelining techniques are effective at generating
high-throughput hardware for regular dataflow-centric applications
with well-structured data access patterns, they cannot efficiently
synthesize irregular programs (e.g. graph algorithms, data analyt-
ics, sparse matrix computations) because these programs exhibit
data-dependent control flow, irregular memory dependence patterns,
and dynamic workloads. In particular, irregular programs incur
structural and/or data hazards caused by conditional and/or data-
dependent memory operations whose occurrence pattern cannot be
accurately predicted by static compiler analysis, even with advances
in polyhedral model [10, 11]. To ensure functional correctness, the
pipelining algorithm must conservatively assume that these hazards
always occur, even if they rarely or never do in practice. Conse-
quently, conservative static pipelining leads to pessimistic perfor-
mance as the pipeline stalls needlessly to avoid hazards which may
be infrequent during actual execution.

We illustrate this performance gap using Maximal Matching in
Figure 1(a), a common graph algorithm that computes the set of in-
dependent edges without common vertices in a graph. The kernel
examines the two endpoints of each edge of a graph and checks if
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Cycles
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

j=0 e.ld v.ld v.ld v.st v.st
j=1 e.ld v.ld v.ld ⇠⇠⇠XXXv.st ⇠⇠⇠XXXv.st
j=2 e.ld v.ld v.ld ⇠⇠⇠XXXv.st ⇠⇠⇠XXXv.st
j=3 e.ld v.ld v.ld ⇠⇠⇠XXXv.st ⇠⇠⇠XXXv.st

(a) Execution following
static schedule in (b) in-
curs 17 cycles. II=4 for all
iterations.

Cycles
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

j=0 e.ld v.ld v.ld v.st v.st
j=1 e.ld v.ld v.ld ⇠⇠⇠XXXv.st ⇠⇠⇠XXXv.st
j=2 e.ld v.ld v.ld ⇠⇠⇠XXXv.st ⇠⇠⇠XXXv.st
j=3 e.ld v.ld v.ld ⇠⇠⇠XXXv.st ⇠⇠⇠XXXv.st

(b) Ideal execution incurs
only 13 cycles. II=2 after
Cycle 4.

Figure 2: Execution of Maximal Matching — Assume a single-ported memory for each array.⇠⇠⇠XXXv.st indicates a store to array v that is not
executed due to false conditional branch. (a) Execution following the static schedule in Figure 1(b). (b) Ideal latency-optimal execution.

they are marked. If not, the algorithm updates the vertices at the end-
points using two conditional stores. Note that there are conditional
loop-carried dependences between the load operations on line 5
and the store operations on line 6/7. However, these stores are
executed infrequently for a dense graph because only a small subset
of its edges are independent. Figure 1(b) shows the static schedule
for one iteration of the loop. For this schedule, each array is mapped
to a single-ported memory so only one memory access per array is
allowed in each cycle. To avoid potential structural and data haz-
ards, conventional techniques will pipeline this design to an II of
4 cycles, which results in a 17-cycle execution latency, as shown in
Figure 2(a), for the first four iterations processing a fully-connected
graph. Six cycles are unused because the condition on line 5 in
Figure 1(a) is evaluated false for all iterations except j=0, thus no
stores need to be performed for those iterations.

To take advantage of the infrequent nature of conditional mem-
ory accesses and inter-iteration memory dependences in this case,
a better solution would be to launch new iterations more frequently
to increase the efficiency of the pipeline by saturating the available
memory bandwidth. As shown in the ideal execution in Figure 2(b),
aggressively launching a new iteration every two cycles from Cy-
cle 4 onward reduces the execution latency to 13 cycles. However,
aggressive pipelining causes structural hazards, when the stores
from the current iteration collide with loads from the next itera-
tion, as well as data hazards, when the loop-carried dependence is
violated. For example, if the stores to array v in iteration j=1 were
executed, they would collide with the loads from array v in iteration
j=2. Moreover, a dependent load in iteration j=2 may read from an
address in array v before a store in iteration j=1 writes to the same
address, violating the inter-iteration read-after-write dependence be-
tween these memory accesses.

We propose to address the performance gap between conserva-
tive and aggressive pipelining by speculatively executing each it-
eration, launching each iteration before hazard-free execution can
be guaranteed, and rely on a hardware dynamic hazard resolution
mechanism to resolve any hazard that actually occurs. To achieve
high throughput using this approach, two problems must be ad-
dressed: first, aggressive pipelining must be performed without pes-
simistically assuming that conditional or data-dependent hazards al-
ways occur; second, hazards that actually occur must be detected
and resolved appropriately at runtime .

In this paper we propose a set of synergistic techniques which
enable dynamic hazard resolution in pipeline synthesis. We ad-
dress the scheduling problem by virtualizing the memory interface
to make memory accesses appear independent. Virtualization hides
structural hazards and dependences between memory operations, al-
lowing any conventional HLS tools to perform aggressive schedul-
ing without the need for programmer intervention. We next intro-
duce hazard resolution logic which resolves structural hazards via
port arbitration and data hazards via pipeline squashing. The hazard
resolution hardware is automatically generated based on the number
of virtual memory ports, the type (read or write) of each port, and
the possible data dependences between memory accesses.

While our techniques are generally applicable to structural and
data hazards for any expensive or limited hardware resources, this
paper emphasizes memory-related hazards, because memory ports
constitute a scarce resource and memory dependences are a com-
mon limiting factor of pipeline throughput in irregular programs.
In particular, we focus on irregular loops with conditional mem-
ory accesses and inter-iteration memory dependences whose access
patterns cannot be asserted at compile time. Our approach works for
truly dynamic data dependences for which speculation, hazard de-
tection, and replay are necessary for high-throughput pipelined exe-
cution. Our techniques provide the most performance benefit when
the conditional accesses and data dependences are infrequent. Our
approach is especially relevant as FPGA devices continue to attain
higher memory bandwidths [6]. Specifically, our major technical
contributions are threefold:

1. We identify a considerable performance gap in the HLS of
irregular programs due to conservative nature of static pipelining
in face of infrequent data-dependent dynamic hazards.

2. To our best knowledge, we are the first to propose and study
structural hazard resolution and speculative execution as dy-
namic pipelining techniques to bridge this performance gap.

3. We compose our generated RTL with pipelines synthesized by
a commercial HLS tool to achieve significant performance im-
provement on a suite of irregular benchmarks.

The remainder of the paper is organized as follows: Section 2
illustrates our dynamic hazard resolution techniques; Section 3 ex-
amines implementation details and discusses experimental results;
Section 4 discusses related work; Section 5 concludes with the over-
all insight of this work.

2. Dynamic Hazard Resolution for HLS
We propose three synergistic techniques to augment the HLS-
synthesized pipeline with dynamic hazard resolution to address the
performance gap caused by static alias analysis and scheduling. Fig-
ure 3 illustrates the overall architectural template for the augmented
pipeline with Maximal Matching from Figure 1(a), composed of an
accelerator synthesized with a virtualized memory interface con-
nected to a hazard resolution unit (HRU) customized for the Max-
imal Matching application. The HRU can be further divided into a
data hazard resolution unit (D-HRU) and a structural hazard reso-
lution unit (S-HRU). The HRU dynamically resolves structural and
data hazards that occur in the Maximal Matching pipeline and com-
municates with memory. Our approach does not require any modifi-
cation to current pipelining algorithms. HRU logic is automatically
generated based on the schedule of the synthesized pipeline and a
set of may-alias memory access pairs obtained from static analysis
and/or user-specified directives. Our techniques also benefit from
more accurate alias analysis to decrease the number of may-alias
pairs and reduce the complexity of the customized HRU. We will
use Maximal Matching to illustrate the customizable architecture.
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Figure 3: Architectural template for the composed Maximal
Matching accelerator — HLS synthesized Maximal Matching
pipeline with customized hazard resolution unit (HRU) consisting
of a data hazard resolution unit (D-HRU) and a structural hazard
resolution unit (S-HRU). A version with four virtual ports is shown.

1 for (j=0...num_edges){
2 int s = e[j].src;
3 int d = e[j].dst;
4
5 if (v0[s]<0 && v1[d]<0){
6 v2[s] = d;
7 v3[d] = s;
8 }}

Figure 4: Maximal Match-
ing example — Virtualized
source code in C-like syntax.
Compared to Figure 1(a), ac-
cesses to array v have been re-
placed by accesses to v0, v1,
v2, and v3, respectively.

2.1 Memory Interface Virtualization
Although we have identified a significant opportunity in improving
the performance of synthesized pipelines by deferring the handling
of infrequent hazards to runtime, we cannot take advantage of this
opportunity unless we can easily reduce the pipeline II below what
is deemed safe by the HLS tool. While it is possible to modify
existing pipelining algorithms for this purpose, doing so would not
be generally applicable to any HLS flows. It will also limit our
ability to evaluate our techniques leveraging existing HLS tools.

We propose to relax infrequent resource and memory depen-
dence constraints by virtualizing the memory interface to enable
aggressive pipelining. Virtualization is a source-to-source transfor-
mation that alters each conditional or may-alias memory operations
to access its own independent array. This technique decouples phys-
ical memory ports from the scheduling process to remove memory
port constraints and inter-iteration memory dependences. In the per-
spective of the scheduler, the transformed memory operations do
not share a common resource and thus do not alias. Hiding these
infrequent hazards from the pipeline scheduler enables aggressive
II reduction. Although the virtualized design contains more mem-
ory ports than the non-virtualized design, these ports interface with
the HRU and will be arbitrated for actual physical memory ports, as
shown in Figure 3.

To relax the constraints in Maximal Matching, we can virtualize
its memory port interface by modifying the source code as shown in
Figure 4 where the accesses to the same array v are transformed into
accesses to four different arrays v0, v1, v2 and v3. With this trans-
formation, the HLS tool no longer sees the dependence between
those memory operations and no longer encounters memory port
conflict because each memory operation accesses a different array.
Assuming two physical memory ports and the same schedule as that
in Figure 1(b), Figure 5 shows the execution trace of the first few it-
erations for virtualized Maximal Matching pipelined to II=2. There

Cycles
0 1 2 3 4 5 6 7 8 9

j=0 e.ld v.ld v.ld v.st v.st
j=1 e.ld v.ld v.ld ⇠⇠⇠XXXv.st ⇠⇠⇠XXXv.st
j=2 e.ld v.ld v.ld ⇠⇠⇠XXXv.st ⇠⇠⇠XXXv.st
j=3 e.ld v.ld v.ld ...

Figure 5: Execution of virtualized Maximal Matching — With
two physical memory ports and design pipelined to II=2. Note that
there exist two instances of potential dynamic data hazard between
v.st in j=0 and v.ld in j=1.
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Figure 6: Hazard resolution units (HRUs) for Maximal Match-
ing — (a) Structural hazard resolution unit (S-HRU). (b) Data haz-
ard resolution unit employing speculative squash-and-replay (D-
HRU).

exist two instances of potential dynamic data hazards between v.st
in iteration j=0 and v.ld in j=1.

2.2 Structural Hazard Resolution
We first discuss the implications of aggressive scheduling on re-
sources. Having bypassed unnecessarily conservative resource con-
straints during scheduling, it is necessary to complement the synthe-
sized virtualized pipeline with an S-HRU to resolve structural haz-
ards caused by infrequent conditional memory accesses that actually
occur during runtime. While our proposed scheduling scheme with
virtualization relaxes the constraints on memory ports, the number
of physical memory ports is limited in reality. An S-HRU is required
to appropriately arbitrate memory accesses that present at the virtual
memory ports into a limited number of available physical memory
ports. If there is only one physical memory port available for Max-
imal Matching, v.st from iteration j=0 cannot execute in parallel
with v.ld from iteration j=1 as shown in Figure 7. In this case,
the S-HRU prioritizes v.st in Cycle 3 and stalls v.ld until Cy-
cle 4. Subsequent operations are similarly arbitrated and stalled. As
shown in Figure 6(a), the S-HRU implements a fixed-priority arbi-
tration policy that always services request(s) from the earliest itera-
tion(s). This policy preserves consistency for some speculatively ex-
ecuted memory accesses to reduce the need for squash-and-replay.
The policy is also important for preventing deadlock and allowing
the pipeline to flush in case of stall.

While dynamic hazard resolution is able to arbitrate competing
memory requests, it also allows an aggressively pipelined design to
capture unused memory bandwidth when a conditional memory ac-
cess is not executed due to a false conditional branch. As shown
in Figure 7, dynamic memory port arbitration allows v.ld opera-
tions in iteration j=2 to capture the unused memory bandwidth from
v.st operations that are not executed in iteration j=1 due to a false

Cycles
2 3 4 5 6 7 8 9 10 11

j=0 v.ld v.st v.st
j=1 e.ld v.ld v.ld ⇠⇠⇠XXXv.st ⇠⇠⇠XXXv.st
j=2 e.ld v.ld v.ld ⇠⇠⇠XXXv.st ⇠⇠⇠XXXv.st
j=3 e.ld v.ld v.ld ...

Figure 7: Structural hazard resolution — With a single-ported
memory, memory access from an earlier iteration is prioritized
while others are stalled. v.st from j=0 is prioritized over v.ld
from j=1 even though they are in the same cycle on the HLS-
generated schedule. v.ld operations from j=2 capture the unused
bandwidth of v.st operations from j=1 that are not executed.



conditional branch. If the conditional accesses in Maximal Match-
ing are infrequently executed, we can observe that the effective II
will be very close to the target II of the aggressive pipeline.

The application-specific S-HRU architecture automatically gen-
erated for Maximal Matching is shown in Figure 6(a) targeting one
physical memory port. Because there are four independent array ac-
cesses in the virtualized design in Figure 4, the customized S-HRU
is composed of a merge unit with four input buses (Req0, Req1,
Req2, and Req3) that arbitrates four incoming memory requests
from the virtual request ports of the accelerator to the single physi-
cal memory request port (Req). Similarly, the S-HRU also includes
a split unit that routes any memory response from the single phys-
ical memory response port (Resp) back to the appropriate virtual
response port (Resp0, Resp1, Resp2, or Resp3) of the accelera-
tor. A fixed-priority arbiter determines the priority of requests in the
same cycle by always servicing request from the earliest iteration.

The proposed approach is able to elastically adapt to mem-
ory bandwidth that varies over time. This is especially applicable
to emerging accelerator-rich architectures where many accelerators
share the same memory ports [3]. For these architectures, statically
assigning memory ports is either inefficient or impractical. In Sec-
tion 3, we show that our hazard resolution techniques can effectively
adapt to varying memory bandwidth.

2.3 Data Hazard Resolution
In addition to resource constraints, our aggressive scheduling
scheme also relaxes inter-iteration dependence constraints by op-
timistically assuming that may-alias memory accesses would never
alias. To ensure correct pipeline execution for the occasions when
memory accesses do alias, however infrequent, we further comple-
ment the synthesized virtualized pipeline with a D-HRU to resolve
runtime aliases not considered during static scheduling. In Figure 5,
since the conditional accesses are actually executed in iteration j=0,
v.ld in iteration j=1 is executed at Cycle 3 before v.st in j=0 is
executed in Cycle 4. If the addresses of these may-alias memory
accesses actually alias during runtime, the execution shown in Fig-
ure 5 would violate inter-iteration read-after-write dependence.

We propose to speculatively execute may-alias memory opera-
tions and perform squash and replay if the alias actually occurs dur-
ing runtime. For Maximal Matching, we can speculatively execute
the load operations from array v and squash and replay them only
when memory aliasing is detected during the execution of a may-
alias store. As shown in Figure 8, v.ld operations in iteration j=1
execute speculatively but are later squashed when v.st in j=0 ex-
ecutes in Cycle 4 and detects alias with the speculative v.ld from
j=1 executed in Cycle 3. Due to the squash, iteration j=1 replays
starting from Cycle 5, the cycle immediately after the alias is de-
tected. On the other hand, v.ld operations executed speculatively
in j=2 do not get squashed because v.st operations in iteration j=1
are not executed and cause no alias.

We propose a customized data hazard resolution unit with
squash-and-replay capability (D-HRU) to enable a fully speculative
pipeline. To prevent speculatively executed memory accesses from
corrupting states, D-HRU is automatically generated to selectively
include load queues and/or store queues to buffer speculatively ex-
ecuted requests until they are committed to memory. In addition,
D-HRU selectively instantiates store-to-load forwarding unit to for-

Cycles
3 4 5 6 7 8 9 10 11 12

j=0 v.st v.st
j=1 ⇠⇠⇠v.ld ⇠⇠⇠v.ld e.ld v.ld v.ld ⇠⇠⇠XXXv.st ⇠⇠⇠XXXv.st
j=2 e.ld e.ld v.ld v.ld ⇠⇠⇠XXXv.st ⇠⇠⇠XXXv.st
j=3 e.ld v.ld v.ld ...

Figure 8: Speculative squash-and-replay — The execution of
v.st in Cycle 4 detects alias with v.ld executed in Cycle 3. Ex-
ecuted v.ld operations in Cycle 3 and 4 from j=1 are squashed
(indicated by⇠⇠⇠v.ld). Iterations j=1 and onward are then replayed.

ward not yet committed store data. While the loads and stores re-
side in the queue, they are checked by other committing loads and
stores to detect any mis-speculation. D-HRU implements a squash-
and-replay mechanism that is able to cancel and replay any mis-
speculated iterations.

While the idea of speculation is borrowed from complex super-
scalar processors, the customized architecture of an HLS synthe-
sized pipeline provides a unique opportunity to greatly simplify the
complexity of the speculation logic. As such, our hardware gen-
eration algorithm is designed to instantiate the minimum subset
and minimum number of the aforementioned hardware modules
to support the alias pattern of a particular application for a spe-
cific schedule. In Figure 6(b), the customized D-HRU instantiates a
Load Unit for port 0 to buffer incoming load requests for array v0
(v[s].load), because these requests may alias with store requests
on port 3 from array v3 (v[d].store). The size of the queue is
determined by the difference between the worst-case schedule dis-
tance from the load to any potentially aliased stores (3 cycles in this
case) and the II of the pipeline. Thus we need only one entry in the
load queue to buffer incoming requests at port 0 for II=2.

In Figure 6(b), the Store Unit for port 3 instantiates a Load
Address Check unit that reads the speculative load addresses from
the Load Queue for port 0 and check whether the current store
request in port 3 (v[d].store) aliases with any speculative load
requests from port 0 (v[s].load). If so, it sends a squash signal
to the Squash and Replay Unit which squashes and replays the
appropriate iterations. Request Filter is instantiated as part of
the Load Unit or Store Unit to drop squashed requests. No store
buffers need to be instantiated because the store operations are not
speculatively executed. Load Unit for port 1 and Store Unit for
port 2 implement load buffer and load check similar to those of port
0 and 3, respectively.

3. Experiments
While we implement a source-to-source transformation to virtu-
alize the memory interface of the design, we develop a highly-
parameterized hardware generation algorithm to automatically gen-
erate the minimum amount of HRU logic necessary for the partic-
ular application and compose the HRU logic with the synthesized
pipeline to achieve high performance. The hardware generation al-
gorithm leverages profiling and dependence analysis passes to ex-
tract infrequent may-alias memory access pairs, along with meta-
data extracted from the schedule of the synthesized design to intel-
ligently instantiate and connect HRU modules based on the archi-
tectural templates described in Section 2.

During hardware generation, the algorithm first extracts the nec-
essary meta-data from the results of pipeline synthesis, including the
II of the schedule, schedule distance between infrequent may-alias
memory accesses, and the number of synthesized virtual memory
ports. Then the algorithm generates the S-HRU based on the number
of virtual and physical ports. Afterward, the algorithm instantiates
a D-HRU if there exists dependence that must be resolved dynam-
ically. The algorithm automatically customizes the composition of
the D-HRU based on the number of virtual ports, a list of depen-
dences, and the specification of each dependence. More specifically,
a D-HRU is selectively composed of custom-size load/store queue,
data forward unit, squash unit, replay unit, and filter units for re-
solving speculatively executed load and store operations.

We implement the hardware generation algorithm within a
Python-based hardware modeling framework, which supports con-
current structural hardware modeling and provides a collection of
tools for simulating and translating Python RTL models to Ver-
ilog [9]. To compose the synthesized pipeline with customized
HRU, we instantiate a top-level model that integrates each HLS-
generated accelerator design with appropriately-parameterized
HRU models. Valid-ready interfaces are implemented to commu-
nicate between hardware units and stall the circuit when necessary.



Table 1: QoR comparison between baseline (base), alternative with structural hazard resolution only (s-hru), and alternative with structural
and data hazard resolution (all) using a single-ported memory. Target clock period is 5ns. Designs include Sorting (SORT), Connected
Components Labeling (CC), Histogram (HIST), Maximal Matching (MM), Matrix Power (MATPOW), and N-Queens Algorithm (NQ).

Design Latency (cycles) Clock Period (ns) #LUTs #FFs #DSPs
base s-hru all base s-hru all base s-hru all base s-hru all base s-hru all

SORT 3917 3153 3084 4.2 4.1 4.2 624 651 879 717 806 992 4 4 4
CC 2114 1513 1131 4.9 4.6 4.6 899 1047 1224 874 1308 1472 0 0 0

HIST 78014 78014 39382 3.9 4.1 4.2 508 592 652 529 602 753 2 2 2
MM 1973 1440 1150 3.9 4.3 4.6 487 586 960 479 516 852 0 0 0

MATPOW 16018 10529 6131 4.4 4.4 4.4 826 1789 1850 1228 2232 2413 13 12 12
NQ 2280 1344 1344 4.3 4.4 4.6 512 563 609 406 445 555 1 1 1

This composition can be simulated and synthesized with conven-
tional tools. Both the C-level programs and composed RTL mod-
els are synthesized with Vivado 2015.1 targeting Xilinx Virtex-7
FPGA. Quality of results (QoR) is obtained post place-and-route,
and performance is obtained from cycle-accurate RTL simulation.

3.1 Benchmarks
To understand the implications of our proposed approach, we ex-
periment with designs that exhibit data-dependent structural and
data hazards from a range of application domains. Our experiments
emphasize irregularity typically not found in regular applications
where current HLS tools excel. We discuss two applications in de-
tail.

1 for (i=0; i<N; ++i){
2 int m = feature[i];
3 float wt = weight[i];
4 if (m>THRESHOLD){
5 float x = hist[m];
6 hist[m] = x + wt;
7 }}

1 for (k=1; k<=m; k++){
2 for (p=0; p<nz; p++){
3 x[k][row[p]] +=
4 a[p]*x[k-1][col[p]];
5 }
6 }

(a) CountIf Histogram (b) Matrix Power

Figure 9: Irregular loop kernels with conditional hazards —
(a) CountIf Histogram constructs a weighted histogram of an
array of features above a specified threshold. Array hist incurs
conditional hazards. (b) Matrix Power computes the set of vectors
A

i
~x for i = [0,m]. Array x incurs conditional hazards.

In Figure 9(a), each iteration of the CountIf Histogram ker-
nel increases the bin indexed by the current feature value by adding
the current weight if the feature value is above a specified thresh-
old. There is an inter-iteration read-after-write dependence between
the load on line 5 and the store on line 6, which may cause
data hazards if a subsequent iteration reads from the same histogram
bin before the current iteration writes to it. While such memory
aliasing is usually rare during histogram computation, it is impos-
sible to assert the absence of such alias without prior knowledge
of the sequence of feature values. Thus the HLS tool must cre-
ate a conservative schedule such that a subsequent iteration reads
from the histogram after the current iteration finishes writing to the
histogram. Moreover, static scheduling unconditionally allocates a
memory port for each memory access in a cycle even if the access is
conditional. This results in inefficient utilization of memory band-
width when the conditional accesses are predicated false at runtime.

In Figure 9(b), the Matrix Power kernel computes the set
of vectors A

i
~x for i = [1,m]. With A stored as a coordinate

list of (row, column, value) tuples, this kernel performs m

sparse matrix-vector multiplications. The indirect memory accesses
x[k][row[p]] and x[k-1][col[p]] on line 3 and line 4
present a potential inter-iteration read-after-write dependence be-
cause the result of A

i
~x depends on that of A

i�1
~x. To ensure

functional correctness without complete knowledge of the run-
time values of row[p] and col[p], the HLS tool must conserva-

tively execute load from x[k-1][col[p]] only after store to
x[k][row[p]] from a previous iteration has been completed.

3.2 Results
In Table 1, we first compare the achieved latency, clock period,
and resource usage between the baseline designs, alternative de-
signs with S-HRU only, and alternative designs with both D-HRU
and S-HRU. The baseline designs consist of the highest-throughput
pipelines generated by Vivado HLS, while our alternative designs
are virtualized versions of the baseline designs synthesized with the
same commercial tool but augmented with dynamic hazard resolu-
tion. With a single-ported memory, Table 1 shows that our alter-
native designs are able to achieve a significant latency reduction
compared to the baseline designs with reasonable timing and area
overhead. Note that the Histogram design excludes the condition in
Figure 9(a) to present a case in which S-HRU provides no benefit.

The amount of speedup is dependent on the input data pattern,
number of executed conditional memory accesses, and the avail-
able physical memory bandwidth. Table 1 breaks down how latency
improves with only structural hazard resolution and both structural
and data hazard resolution. For Histogram, including only S-HRU
provides no performance benefit because the pipeline throughput is
limited by a long inter-iteration dependence cycle. In this case, it is
necessary to incur the overhead of the D-HRU. On the other hand,
N-Queens reaps no benefit from speculation because structural haz-
ard resolution has indirectly helped resolve any dynamic data de-
pendence due to the limited number of memory ports. In this case,
it is sufficient to include only the S-HRU.

By studying different design points, Table 1 demonstrates the in-
herent trade-off between performance gain and area. Our proposed
techniques are important because loops that exhibit data-dependent
hazards are often dominated by memory accesses. This is the rea-
son that only a limited amount of compute resources are necessary.
In addition, these loops usually contain only a couple of may-alias
pairs, and thus require relatively lightweight hazard resolution logic
that keeps timing and area well-contained.

We further study the effect of increasing memory bandwidth on
performance and area by varying the number of physical memory
ports. Figure 10 shows the speedup of each design for one to four
memory ports normalized to the latency of the single-port case. For
Sorting, Connected Components, Histrogram, and N-Queens, per-
formance saturates beyond two memory ports because these designs
contain at most two unconditional memory accesses in each cycle
most of the time. These two unconditional accesses need to be arbi-
trated only when there are less than two physical ports. Having more
than two physical ports does not help because there aren’t enough
pipelined parallel accesses in these designs to utilize any ports be-
yond the two required. On the other hand, Maximal Matching and
Matrix Power continue to reap the benefit of increasing memory
bandwidth beyond two ports because both designs contain many
memory accesses that can execute in parallel. Having a large num-
ber of memory accesses at each cycle allows the design to take full
advantage of the available bandwidth.

Table 2 compares the achieved clock period and resource usage
for different numbers of memory ports for Maximal Matching. Al-
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Figure 10: Performance comparison for different memory band-
widths — Speedup is normalized to the latency of single-ported
memory case. The speedup saturates beyond two memory ports for
designs with less pipelined parallelism or fewer memory accesses.

ternative designs with two to four ports incur 1.22x to 1.70x LUT
counts and 1.02x to 1.19x FF counts with comparable timing.
These overheads originate from the S-HRU shown in Figure 6(a)
and apply equally to any benchmark. With an increasing number
of physical memory ports, more complicated arbitration logic is
needed to assign pending requests from the virtual ports to the avail-
able physical ports, which explains the increasing resource usage.
According to Figure 10, Maximal Matching using four physical
ports achieves over 1.8x speedup compared to the single-ported
case, which justifies the 1.70x LUT and 1.19x FF overhead.

Table 2: Timing and area overhead for increasing number of mem-
ory ports for Maximal Matching. No DSPs are used.

#Ports Clock Period (ns) #LUTs #FFs
1 4.6 960 852
2 4.5 1171 (1.22x) 872 (1.02x)
3 4.5 1322 (1.38x) 941 (1.10x)
4 4.5 1629 (1.70x) 1010(1.19x)

4. Related Work
Many academic and commercial HLS tools, such as Vivado HLS [4]
and LegUp [2], leverage static pipelining techniques to synthesize
high-performance designs. Recent work in flushing-enabled pipelin-
ing [5] and multithreaded pipelining [13] extends these techniques
to support dynamic memory behaviors. ElasticFlow enables the
pipelining of irregular loop nests [14]. Zhao et al. synthesize irreg-
ular program by decoupling data structures from algorithms [15].

Alle et al. propose a runtime memory disambiguation technique
where the address of a store is sent out before the store itself, allow-
ing hardware to check whether an infrequently aliasing operation
is expected to cause a hazard [1]. This information is leveraged to
enable more aggressive pipeline II. We differentiate from this ap-
proach by considering structural in addition to data hazards for ad-
ditional performance gain. We also study speculative execution to
overcome the limitations pointed out by Alle et al.

Liu et al. extend polyhedral analysis to synthesizes pipelines that
switches between aggressive (fast) execution, when hazards can be
safely ignored, and conservative (slow) execution, when hazards are
expected [7, 8]. Unlike this class of non-speculative stalling ap-
proach, our proposed approach does not require exact compile-time
analysis to achieve high throughput. Our techniques tackle dynamic
hazard resolution more broadly by emphasizing sophisticated run-
time mechanisms complemented by relatively simple compile-time
analysis. Nevertheless, our approach can benefit from the compile-
time analysis proposed in this work.

5. Conclusions
Existing HLS tools rely on static pipelining techniques that extract
parallelism only at compile-time, and are therefore not competitive
for irregular programs with dynamic parallelism. As a result, we
aim to create adaptive pipelining techniques that dynamically ex-
tract parallelism at run-time and efficiently handles statically unan-
alyzable program patterns. We address the problem of augmenting
the HLS pipeline with application-specific dynamic hazard resolu-
tion to effectively resolve infrequent data-dependent structural and
data hazards without sacrificing throughput. Our proposed approach
achieve substantial performance improvement for a range of appli-
cations. For future work, it would be interesting to explore the trade-
off between maximum effective pipeline throughput and complex-
ity of the hazard resolution logic. It would also be useful to develop
scheduling techniques to reduce the overhead of hazard resolution.
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