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Accelerating Static Parallel Algorithms on
Reconfigurable Hardware

General
Purpose

CPU

Reconfig
Hardware
(FPGA)

Shared Mem Sys

for (int i=0; i<n; i++)
  c[i] = a[i] + b[i];

High
Level
Synthesis

__kernel
void vvadd( __global int* c, 
            __global int* a,
            __global int* b, int n )
{
  int id = get_global_id(0);
  if ( id < n )
    c[id] = a[id] + b[id];
}

I Emerging CPU+FPGA platforms
(Xilinx Zynq, Altera Cyclone SoC)

I HLS maps parallelism statically to
highly pipelined and parallel PEs
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Programmers are increasingly moving from
thread- to task-centric programming

int fib( int n )
{
  if (n < 2)
    return n;
  int x = spawn fib(n-1);
  int y = fib(n-2);
  sync;
  return x + y;
}

General
Purpose

CPU

Reconfig
Hardware
(FPGA)

Shared Mem Sys

I Task-parallel programming
frameworks enable creating
tasks dynamically as the
program executes

. Intel Cilk Plus, Intel C++ TBB,
Microsoft’s .NET TPL, Java’s
Fork/Join, OpenMP

I Benefits of this approach:
. hierarchical data structures
. divide-and-conquer algos
. adaptive algorithms
. arbitrary nesting, composition
. automatic load balancing
. efficient in theory and practice
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Explicit Continuation Passing

A
spawnspawn

CBchild
task

parent
  task

cont =〈D,2〉cont =〈D,1〉

make
successor E F

G

D

spawn
cont =〈G,2〉

make
successor
cont =〈D,2〉

arg1 arg2

successor task

Data-Parallel Pattern

Data-Flow Pattern

Fork/Join Pattern
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Example of Explicit Continuation Passing w/ Cilk

int fib( int n )
{
  if (n < 2)
    return n;
  int x = spawn fib(n-1);
  int y = fib(n-2);
  sync;
  return x + y;
}

task fib( cont int k, int n )
{
 if ( n < 2 )
   send_argument( k, n );
 else {
   cont int x, y;
   spawn_next sum( k, ?x, ?y );
   spawn      fib( x, n-1 );
   spawn      fib( y, n-2 );
 }
}

task sum( cont int k, int x, int y )
{
 send_argument( k, x+y );
}

I Cilk-1 used explicit continuation passing (JPDC’96)
I Cilk-5 used call/return semantics for parallelism (PLDI’98)
I Explicit continuation passing is an elegant match for hardware
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Scheduling Tasks with Work Stealing
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I Work stealing has good performance, space requirements, and
communication overheads in both theory and practice
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Design Methodology
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void FibWorkerHLS(
  TaskInPort<FibTask>  tin,
  TaskOutPort<FibTask> tout,
  SuccReqPort          sreq,
  SuccRespPort         sresp,
  ArgOutPort           aout )
{
  FibTask  task = task_in.read();
  task_k_t k    = task.k;

  if (task.type == FIB) {
    int n = task.x;
    if (n < 2)
      send_arg( Arg(k, n), aout );
    else {
      k = make_succ(SUM,k,2,sreq,sresp);
      spawn(FibTask(FIB,k,1,n-2), tout);
      spawn(FibTask(FIB,k,0,n-1), tout);
    }
  }
  else if (task.type == SUM) {
    int sum = task.x + task.y;
    send_arg(Arg(k, sum), aout);
  }
}

Worker
Specification

(C++)

Wrapper
Around TBB

(C++)

C++
Compiler

Standard
x86 or ARM

Binary
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Applications

Name Suite Description Pattern

nw in-house Needleman-Wunsch Algorithm data-flow
quicksort in-house quicksort algorithm fork/join
cilksort Cilk apps parallel merge sort algorithm fork/join
queens Cilk apps N-queens problem fork/join
knapsack Cilk apps 0-1 knapsack problem fork/join
uts UTS unbalanced tree search fork/join
bbgemm MachSuite blocked matrix multiplication data-parallel
bfsqueue MachSuite breadth first search data-parallel
spmvcrs MachSuite sparse matrix-vector mult data-parallel
stencil2d MachSuite 3D stencil computation data-parallel

I Optimized software baseline implemented using Intel Cilk Plus with
ARM NEON auto-vectorization

I C++ application driver/worker implemented with design methodology
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Current and Future CPU+FPGA Platforms
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See Paper
I Current Zynq-7000 SoC Platform

. Prototype using Zedboard

. Two 667MHz ARM Cortex-A9 cores

. Xilinx 7-series integrated FPGA fabric
(modest capacity, 142MHz)

. Xcel uses stream buffers

. Lower BW: FPGA↔ coherent mem sys

I Future CPU+FPGA Platform
. Simulation study using gem5
. Eight 1GHz ARM 4-way OOO cores
. Xilinx 7-series integrated FPGA fabric

(larger capacity, 200MHz)
. Xcel uses coherent 2x-pumped 32KB L1$
. Higher BW: FPGA↔ coherent mem sys
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Speedup on Future CPU+FPGA Platform
S
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nw quicksort cilksort queens knapsack

uts bbgemm bfsqueue spmvcrs stencil2d

FlexArchCilk on Eight OOO Cores LiteArch

I FlexArch is 4× faster than 8 cores, 24× faster than 1 core (geo mean)
I FlexArch is faster than LiteArch for more dynamic algorithms (load balancing)
I See paper for scalability, resource usage, energy efficiency, cache size study
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I Importance of exploring techniques for
accelerating more complex applications
on reconfigurable hardware

I We have described a promising
approach to accelerate dynamic
parallel algorithms

. computation model using explicit
continuation passing

. accelerator architecture based on
work stealing

. design methodology combining a
PyMTL-based architectural template with
high-level synthesis
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