
An Architectural Framework for
Accelerating Dynamic Parallel Algorithms

on Reconfigurable Hardware

Tao Chen, Shreesha Srinath
Christopher Batten, G. Edward Suh

Computer Systems Laboratory
School of Electrical and Computer Engineering

Cornell University

51st Int’l Symp. on Microarchitecture
Fall 2018



• Motivation • Computation Model Accelerator Architecture Design Methodology Evaluation

Accelerating Static Parallel Algorithms on
Reconfigurable Hardware

General
Purpose

CPU

Reconfig
Hardware
(FPGA)

Shared Mem Sys

for (int i=0; i<n; i++)
  c[i] = a[i] + b[i];

High
Level
Synthesis

__kernel
void vvadd( __global int* c, 
            __global int* a,
            __global int* b, int n )
{
  int id = get_global_id(0);
  if ( id < n )
    c[id] = a[id] + b[id];
}

I Emerging CPU+FPGA platforms
(Xilinx Zynq, Altera Cyclone SoC)

I HLS maps parallelism statically to
highly pipelined and parallel PEs

C. Batten Accelerating Dynamic Parallel Algorithms on Reconfigurable Hardware 2 / 18



• Motivation • Computation Model Accelerator Architecture Design Methodology Evaluation

Programmers are increasingly moving from
thread- to task-centric programming

int fib( int n )
{
  if (n < 2)
    return n;
  int x = spawn fib(n-1);
  int y = fib(n-2);
  sync;
  return x + y;
}

General
Purpose

CPU

Reconfig
Hardware
(FPGA)

Shared Mem Sys

I Task-parallel programming
frameworks enable creating
tasks dynamically as the
program executes

. Intel Cilk Plus, Intel C++ TBB,
Microsoft’s .NET TPL, Java’s
Fork/Join, OpenMP

I Benefits of this approach:
. hierarchical data structures
. divide-and-conquer algos
. adaptive algorithms
. arbitrary nesting, composition
. automatic load balancing
. efficient in theory and practice

C. Batten Accelerating Dynamic Parallel Algorithms on Reconfigurable Hardware 3 / 18



Motivation Computation Model Accelerator Architecture Design Methodology Evaluation

Accelerating Dynamic Parallel Algorithms on
Reconfigurable Hardware

General
Purpose

CPU

Reconfig
Hardware
(FPGA)

Shared Mem Sys

int fib( int n )
{
  if (n < 2)
    return n;
  int x = spawn fib(n-1);
  int y = fib(n-2);
  sync;
  return x + y;
}

General
Purpose

CPU

Reconfig
Hardware
(FPGA)

Shared Mem Sys

Motivation

Computation Model

Accelerator Architecture

Design Methodology

Evaluation

C. Batten Accelerating Dynamic Parallel Algorithms on Reconfigurable Hardware 4 / 18



Motivation • Computation Model • Accelerator Architecture Design Methodology Evaluation

Accelerating Dynamic Parallel Algorithms on
Reconfigurable Hardware

General
Purpose

CPU

Reconfig
Hardware
(FPGA)

Shared Mem Sys

int fib( int n )
{
  if (n < 2)
    return n;
  int x = spawn fib(n-1);
  int y = fib(n-2);
  sync;
  return x + y;
}

General
Purpose

CPU

Reconfig
Hardware
(FPGA)

Shared Mem Sys

Motivation

Computation Model

Accelerator Architecture

Design Methodology

Evaluation

C. Batten Accelerating Dynamic Parallel Algorithms on Reconfigurable Hardware 5 / 18



Motivation • Computation Model • Accelerator Architecture Design Methodology Evaluation

Explicit Continuation Passing

A
spawnspawn

CBchild
task

parent
  task

cont =〈D,2〉cont =〈D,1〉

make
successor E F

G

D

spawn
cont =〈G,2〉

make
successor
cont =〈D,2〉

arg1 arg2

successor task

Data-Parallel Pattern

Data-Flow Pattern

Fork/Join Pattern

C. Batten Accelerating Dynamic Parallel Algorithms on Reconfigurable Hardware 6 / 18



Motivation • Computation Model • Accelerator Architecture Design Methodology Evaluation

Example of Explicit Continuation Passing w/ Cilk

int fib( int n )
{
  if (n < 2)
    return n;
  int x = spawn fib(n-1);
  int y = fib(n-2);
  sync;
  return x + y;
}

task fib( cont int k, int n )
{
 if ( n < 2 )
   send_argument( k, n );
 else {
   cont int x, y;
   spawn_next sum( k, ?x, ?y );
   spawn      fib( x, n-1 );
   spawn      fib( y, n-2 );
 }
}

task sum( cont int k, int x, int y )
{
 send_argument( k, x+y );
}

I Cilk-1 used explicit continuation passing (JPDC’96)
I Cilk-5 used call/return semantics for parallelism (PLDI’98)
I Explicit continuation passing is an elegant match for hardware

C. Batten Accelerating Dynamic Parallel Algorithms on Reconfigurable Hardware 7 / 18



Motivation Computation Model • Accelerator Architecture • Design Methodology Evaluation

Accelerating Dynamic Parallel Algorithms on
Reconfigurable Hardware

General
Purpose

CPU

Reconfig
Hardware
(FPGA)

Shared Mem Sys

int fib( int n )
{
  if (n < 2)
    return n;
  int x = spawn fib(n-1);
  int y = fib(n-2);
  sync;
  return x + y;
}

General
Purpose

CPU

Reconfig
Hardware
(FPGA)

Shared Mem Sys

Motivation

Computation Model

Accelerator Architecture

Design Methodology

Evaluation

C. Batten Accelerating Dynamic Parallel Algorithms on Reconfigurable Hardware 8 / 18



Motivation Computation Model • Accelerator Architecture • Design Methodology Evaluation

Scheduling Tasks with Work Stealing

 

 

Work in

Progress

Task

Queues

PE 0 PE 1 PE 2 PE 3

I Work stealing has good performance, space requirements, and
communication overheads in both theory and practice

C. Batten Accelerating Dynamic Parallel Algorithms on Reconfigurable Hardware 9 / 18



Motivation Computation Model • Accelerator Architecture • Design Methodology Evaluation

Scheduling Tasks with Work Stealing

 

 

Work in

Progress

Task

Queues

PE 0 PE 1 PE 2 PE 3

Task A

I Work stealing has good performance, space requirements, and
communication overheads in both theory and practice

C. Batten Accelerating Dynamic Parallel Algorithms on Reconfigurable Hardware 9 / 18



Motivation Computation Model • Accelerator Architecture • Design Methodology Evaluation

Scheduling Tasks with Work Stealing

 

 

Work in

Progress

Task

Queues

PE 0 PE 1 PE 2 PE 3

Task B

Task A

Spawn Task B

I Work stealing has good performance, space requirements, and
communication overheads in both theory and practice

C. Batten Accelerating Dynamic Parallel Algorithms on Reconfigurable Hardware 9 / 18



Motivation Computation Model • Accelerator Architecture • Design Methodology Evaluation

Scheduling Tasks with Work Stealing

 

 

Work in

Progress

Task

Queues

PE 0 PE 1 PE 2 PE 3

Task B

 Dequeue Task B

I Work stealing has good performance, space requirements, and
communication overheads in both theory and practice

C. Batten Accelerating Dynamic Parallel Algorithms on Reconfigurable Hardware 9 / 18



Motivation Computation Model • Accelerator Architecture • Design Methodology Evaluation

Scheduling Tasks with Work Stealing

 

 

Work in

Progress

Task

Queues

PE 0 PE 1 PE 2 PE 3

Task C

Task B

Spawn Task C

I Work stealing has good performance, space requirements, and
communication overheads in both theory and practice

C. Batten Accelerating Dynamic Parallel Algorithms on Reconfigurable Hardware 9 / 18



Motivation Computation Model • Accelerator Architecture • Design Methodology Evaluation

Scheduling Tasks with Work Stealing

 

 

Work in

Progress

Task

Queues

PE 0 PE 1 PE 2 PE 3

Task B

Spawn Task D

Task D

Task C

I Work stealing has good performance, space requirements, and
communication overheads in both theory and practice

C. Batten Accelerating Dynamic Parallel Algorithms on Reconfigurable Hardware 9 / 18



Motivation Computation Model • Accelerator Architecture • Design Methodology Evaluation

Scheduling Tasks with Work Stealing

 

 

Work in

Progress

Task

Queues

PE 0 PE 1 PE 2 PE 3

Task CTask D

Steal Task D Steal Task C

Task B

I Work stealing has good performance, space requirements, and
communication overheads in both theory and practice

C. Batten Accelerating Dynamic Parallel Algorithms on Reconfigurable Hardware 9 / 18



Motivation Computation Model • Accelerator Architecture • Design Methodology Evaluation

Scheduling Tasks with Work Stealing

 

 

Work in

Progress

Task

Queues

PE 0 PE 1 PE 2 PE 3

Task CTask D

Task E Task F

Spawn Task FSpawn Task E

I Work stealing has good performance, space requirements, and
communication overheads in both theory and practice

C. Batten Accelerating Dynamic Parallel Algorithms on Reconfigurable Hardware 9 / 18



Motivation Computation Model • Accelerator Architecture • Design Methodology Evaluation

Scheduling Tasks with Work Stealing

 

 

Work in

Progress

Task

Queues

PE 0 PE 1 PE 2 PE 3

Task CTask DTask E Task F

Steal Task E Steal Task F

I Work stealing has good performance, space requirements, and
communication overheads in both theory and practice

C. Batten Accelerating Dynamic Parallel Algorithms on Reconfigurable Hardware 9 / 18



Motivation Computation Model • Accelerator Architecture • Design Methodology Evaluation

“Flexible” Architectural Template

Networks

In
te

rf
a

c
e

Tile Tile

L1$ L1$

CPU

L1$

Cache Coherent Interconnect

L2 Cache

Off-Chip DRAM

FPGA

TMU

task
out

Worker

task
in

Processing
Element

steal succtask

Pending
Task
Store

Arg &
Task

Router

Stealing Net IF Arg/Task Net IF

C. Batten Accelerating Dynamic Parallel Algorithms on Reconfigurable Hardware 10 / 18



Motivation Computation Model • Accelerator Architecture • Design Methodology Evaluation

“Flexible” Architectural Template

Networks

In
te

rf
a

c
e

Tile Tile

L1$ L1$

CPU

L1$

Cache Coherent Interconnect

L2 Cache

Off-Chip DRAM

FPGA

TMU

task
out

Worker

task
in

Processing
Element

steal succtask

Pending
Task
Store

Arg &
Task

Router

Stealing Net IF Arg/Task Net IF

TMU dequeues

task and sends

to worker

C. Batten Accelerating Dynamic Parallel Algorithms on Reconfigurable Hardware 10 / 18



Motivation Computation Model • Accelerator Architecture • Design Methodology Evaluation

“Flexible” Architectural Template

Networks

In
te

rf
a

c
e

Tile Tile

L1$ L1$

CPU

L1$

Cache Coherent Interconnect

L2 Cache

Off-Chip DRAM

FPGA

TMU

task
out

Worker

task
in

Processing
Element

steal succtask

Pending
Task
Store

Arg &
Task

Router

Stealing Net IF Arg/Task Net IF

Worker sends

request to

pending task

store to create

a successor

C. Batten Accelerating Dynamic Parallel Algorithms on Reconfigurable Hardware 10 / 18



Motivation Computation Model • Accelerator Architecture • Design Methodology Evaluation

“Flexible” Architectural Template

Networks

In
te

rf
a

c
e

Tile Tile

L1$ L1$

CPU

L1$

Cache Coherent Interconnect

L2 Cache

Off-Chip DRAM

FPGA

TMU

task
out

Worker

task
in

Processing
Element

steal succtask

Pending
Task
Store

Arg &
Task

Router

Stealing Net IF Arg/Task Net IF

Pending task

store sends

worker

response with

ID for creating

continuations

C. Batten Accelerating Dynamic Parallel Algorithms on Reconfigurable Hardware 10 / 18



Motivation Computation Model • Accelerator Architecture • Design Methodology Evaluation

“Flexible” Architectural Template

Networks

In
te

rf
a

c
e

Tile Tile

L1$ L1$

CPU

L1$

Cache Coherent Interconnect

L2 Cache

Off-Chip DRAM

FPGA

TMU

task
out

Worker

task
in

Processing
Element

steal succtask

Pending
Task
Store

Arg &
Task

Router

Stealing Net IF Arg/Task Net IF

Worker

sends spawed

tasks to TMU

C. Batten Accelerating Dynamic Parallel Algorithms on Reconfigurable Hardware 10 / 18



Motivation Computation Model • Accelerator Architecture • Design Methodology Evaluation

“Flexible” Architectural Template

Networks

In
te

rf
a

c
e

Tile Tile

L1$ L1$

CPU

L1$

Cache Coherent Interconnect

L2 Cache

Off-Chip DRAM

FPGA

TMU

task
out

Worker

task
in

Processing
Element

steal succtask

Pending
Task
Store

Arg &
Task

Router

Stealing Net IF Arg/Task Net IF

Worker sends

return value

to arg/task

router

C. Batten Accelerating Dynamic Parallel Algorithms on Reconfigurable Hardware 10 / 18



Motivation Computation Model • Accelerator Architecture • Design Methodology Evaluation

“Flexible” Architectural Template

Networks

In
te

rf
a

c
e

Tile Tile

L1$ L1$

CPU

L1$

Cache Coherent Interconnect

L2 Cache

Off-Chip DRAM

FPGA

TMU

task
out

Worker

task
in

Processing
Element

steal succtask

Pending
Task
Store

Arg &
Task

Router

Stealing Net IF Arg/Task Net IF

Worker sends

return value

to arg/task

router

C. Batten Accelerating Dynamic Parallel Algorithms on Reconfigurable Hardware 10 / 18



Motivation Computation Model • Accelerator Architecture • Design Methodology Evaluation

“Flexible” Architectural Template

Networks

In
te

rf
a

c
e

Tile Tile

L1$ L1$

CPU

L1$

Cache Coherent Interconnect

L2 Cache

Off-Chip DRAM

FPGA

TMU

task
out

Worker

task
in

Processing
Element

steal succtask

Pending
Task
Store

Arg &
Task

Router

Stealing Net IF Arg/Task Net IF

If this is the

final argument

pending task

store sends

now ready task

back to TMU

C. Batten Accelerating Dynamic Parallel Algorithms on Reconfigurable Hardware 10 / 18



Motivation Computation Model • Accelerator Architecture • Design Methodology Evaluation

“Flexible” Architectural Template

Networks

In
te

rf
a

c
e

Tile Tile

L1$ L1$

CPU

L1$

Cache Coherent Interconnect

L2 Cache

Off-Chip DRAM

FPGA

TMU

task
out

Worker

task
in

Processing
Element

steal succtask

Pending
Task
Store

Arg &
Task

Router

Stealing Net IF Arg/Task Net IF

If task queue

is empty, TMU

randomly

selects victim

to steal from

C. Batten Accelerating Dynamic Parallel Algorithms on Reconfigurable Hardware 10 / 18



Motivation Computation Model • Accelerator Architecture • Design Methodology Evaluation

“Flexible” Architectural Template

Networks

In
te

rf
a

c
e

Tile Tile

L1$ L1$

CPU

L1$

Cache Coherent Interconnect

L2 Cache

Off-Chip DRAM

FPGA

TMU

task
out

Worker

task
in

Processing
Element

steal succtask

Pending
Task
Store

Arg &
Task

Router

Stealing Net IF Arg/Task Net IF

If task queue

is empty, TMU

randomly

selects victim

to steal from

C. Batten Accelerating Dynamic Parallel Algorithms on Reconfigurable Hardware 10 / 18



Motivation Computation Model • Accelerator Architecture • Design Methodology Evaluation

“Lite” Architectural Template

Networks

In
te

rf
a

c
e

Tile Tile

L1$ L1$

CPU

L1$

Cache Coherent Interconnect

L2 Cache

Off-Chip DRAM

FPGA

TMU

task
out

Worker

task
in

Processing
Element

task

Arg/Task Net IF

C. Batten Accelerating Dynamic Parallel Algorithms on Reconfigurable Hardware 11 / 18



Motivation Computation Model Accelerator Architecture • Design Methodology • Evaluation

Accelerating Dynamic Parallel Algorithms on
Reconfigurable Hardware

General
Purpose

CPU

Reconfig
Hardware
(FPGA)

Shared Mem Sys

int fib( int n )
{
  if (n < 2)
    return n;
  int x = spawn fib(n-1);
  int y = fib(n-2);
  sync;
  return x + y;
}

General
Purpose

CPU

Reconfig
Hardware
(FPGA)

Shared Mem Sys

Motivation

Computation Model

Accelerator Architecture

Design Methodology

Evaluation

C. Batten Accelerating Dynamic Parallel Algorithms on Reconfigurable Hardware 12 / 18



Motivation Computation Model Accelerator Architecture • Design Methodology • Evaluation

Design Methodology

Worker
Specification

(C++)

Architecture
Template
(PyMTL)

Accelerator
Generator
(PyMTL)

Accelerator
RTL

(Verilog)

Vivado
HLS

Worker
RTL

(Verilog)

Architecture
Template
(PyMTL)

Networks

In
te

rf
a

c
e

Tile Tile

L1$ L1$

TMU

task
out

Empty
Worker

task
in

Processing
Element

steal succtask

Pending
Task
Store

Arg &
Task

Router

Stealing Net IF Arg/Task Net IF

Empty
Worker

C. Batten Accelerating Dynamic Parallel Algorithms on Reconfigurable Hardware 13 / 18



Motivation Computation Model Accelerator Architecture • Design Methodology • Evaluation

Design Methodology

Worker
Specification

(C++)

Architecture
Template
(PyMTL)

Accelerator
Generator
(PyMTL)

Accelerator
RTL

(Verilog)

Vivado
HLS

Worker
RTL

(Verilog)

void FibWorkerHLS(
  TaskInPort<FibTask>  tin,
  TaskOutPort<FibTask> tout,
  SuccReqPort          sreq,
  SuccRespPort         sresp,
  ArgOutPort           aout )
{
  FibTask  task = task_in.read();
  task_k_t k    = task.k;

  if (task.type == FIB) {
    int n = task.x;
    if (n < 2)
      send_arg( Arg(k, n), aout );
    else {
      k = make_succ(SUM,k,2,sreq,sresp);
      spawn(FibTask(FIB,k,1,n-2), tout);
      spawn(FibTask(FIB,k,0,n-1), tout);
    }
  }
  else if (task.type == SUM) {
    int sum = task.x + task.y;
    send_arg(Arg(k, sum), aout);
  }
}

Worker
Specification

(C++)

Wrapper
Around TBB

(C++)

C++
Compiler

Standard
x86 or ARM

Binary

C. Batten Accelerating Dynamic Parallel Algorithms on Reconfigurable Hardware 13 / 18



Motivation Computation Model Accelerator Architecture Design Methodology • Evaluation •

Accelerating Dynamic Parallel Algorithms on
Reconfigurable Hardware

General
Purpose

CPU

Reconfig
Hardware
(FPGA)

Shared Mem Sys

int fib( int n )
{
  if (n < 2)
    return n;
  int x = spawn fib(n-1);
  int y = fib(n-2);
  sync;
  return x + y;
}

General
Purpose

CPU

Reconfig
Hardware
(FPGA)

Shared Mem Sys

Motivation

Computation Model

Accelerator Architecture

Design Methodology

Evaluation

C. Batten Accelerating Dynamic Parallel Algorithms on Reconfigurable Hardware 14 / 18



Motivation Computation Model Accelerator Architecture Design Methodology • Evaluation •

Applications

Name Suite Description Pattern

nw in-house Needleman-Wunsch Algorithm data-flow
quicksort in-house quicksort algorithm fork/join
cilksort Cilk apps parallel merge sort algorithm fork/join
queens Cilk apps N-queens problem fork/join
knapsack Cilk apps 0-1 knapsack problem fork/join
uts UTS unbalanced tree search fork/join
bbgemm MachSuite blocked matrix multiplication data-parallel
bfsqueue MachSuite breadth first search data-parallel
spmvcrs MachSuite sparse matrix-vector mult data-parallel
stencil2d MachSuite 3D stencil computation data-parallel

I Optimized software baseline implemented using Intel Cilk Plus with
ARM NEON auto-vectorization

I C++ application driver/worker implemented with design methodology

C. Batten Accelerating Dynamic Parallel Algorithms on Reconfigurable Hardware 15 / 18



Motivation Computation Model Accelerator Architecture Design Methodology • Evaluation •

Current and Future CPU+FPGA Platforms

Networks

In
te

rf
a

c
e

Tile
4PEs

Tile
4PEs

SBuf

ARM
A9

ARM
A9

L1$
32KB

L1$
32KB

Cache Coherent Interconnect

L2 Cache Off-Chip DRAM

FPGA

SBuf

Arbiter

Networks

In
te

rf
a

c
e Tile

4PEs
Tile

4PEs

L1$
32KB

L1$
32KB

8x

8x

ARM
OOO

ARM
OOO

8x

L1$
32KB

L1$
32KB

8x

Cache Coherent Interconnect

L2 Cache Off-Chip DRAM

FPGA

See Paper
I Current Zynq-7000 SoC Platform

. Prototype using Zedboard

. Two 667MHz ARM Cortex-A9 cores

. Xilinx 7-series integrated FPGA fabric
(modest capacity, 142MHz)

. Xcel uses stream buffers

. Lower BW: FPGA↔ coherent mem sys

I Future CPU+FPGA Platform
. Simulation study using gem5
. Eight 1GHz ARM 4-way OOO cores
. Xilinx 7-series integrated FPGA fabric

(larger capacity, 200MHz)
. Xcel uses coherent 2x-pumped 32KB L1$
. Higher BW: FPGA↔ coherent mem sys

C. Batten Accelerating Dynamic Parallel Algorithms on Reconfigurable Hardware 16 / 18



Motivation Computation Model Accelerator Architecture Design Methodology • Evaluation •

Speedup on Future CPU+FPGA Platform
S

p
e

e
d

u
p

 v
s
. 

S
W

 o
n

 O
n

e
 O

O
O

 C
o

re

nw quicksort cilksort queens knapsack

uts bbgemm bfsqueue spmvcrs stencil2d

FlexArchCilk on Eight OOO Cores LiteArch

I FlexArch is 4× faster than 8 cores, 24× faster than 1 core (geo mean)
I FlexArch is faster than LiteArch for more dynamic algorithms (load balancing)
I See paper for scalability, resource usage, energy efficiency, cache size study

C. Batten Accelerating Dynamic Parallel Algorithms on Reconfigurable Hardware 17 / 18



Motivation Computation Model Accelerator Architecture Design Methodology Evaluation

Accelerating Dynamic Parallel Algorithms on
Reconfigurable Hardware

General
Purpose

CPU

Reconfig
Hardware
(FPGA)

Shared Mem Sys

int fib( int n )
{
  if (n < 2)
    return n;
  int x = spawn fib(n-1);
  int y = fib(n-2);
  sync;
  return x + y;
}

General
Purpose

CPU

Reconfig
Hardware
(FPGA)

Shared Mem Sys

I Importance of exploring techniques for
accelerating more complex applications
on reconfigurable hardware

I We have described a promising
approach to accelerate dynamic
parallel algorithms

. computation model using explicit
continuation passing

. accelerator architecture based on
work stealing

. design methodology combining a
PyMTL-based architectural template with
high-level synthesis

C. Batten Accelerating Dynamic Parallel Algorithms on Reconfigurable Hardware 18 / 18


