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Abstract
Vector processors often use a cache to exploit temporal

locality and reduce memory bandwidth demands, but then
require expensive logic to track large numbers of outstand-
ing cache misses to sustain peak bandwidth from memory.
We present refill/access decoupling, which augments the vec-
tor processor with a Vector Refill Unit (VRU) to quickly
pre-execute vector memory commands and issue any needed
cache line refills ahead of regular execution. The VRU re-
duces costs by eliminating much of the outstanding miss state
required in traditional vector architectures and by using the
cache itself as a cost-effective prefetch buffer. We also intro-
duce vector segment accesses, a new class of vector mem-
ory instructions that efficiently encode two-dimensional ac-
cess patterns. Segments reduce address bandwidth demands
and enable more efficient refill/access decoupling by increas-
ing the information contained in each vector memory com-
mand. Our results show that refill/access decoupling is able
to achieve better performance with less resources than more
traditional decoupling methods. Even with a small cache and
memory latencies as long as 800 cycles, refill/access decou-
pling can sustain several kilobytes of in-flight data with min-
imal access management state and no need for expensive re-
served element buffering.

1. Introduction
Abundant data parallelism is found in a wide range of

important compute-intensive applications, from scientific su-
percomputing to mobile media processing. Vector architec-
tures [23] exploit this data parallelism by arraying multiple
clusters of functional units and register files to provide huge
computational throughput at low power and low cost. Mem-
ory bandwidth is much more expensive to provide, and con-
sequently often limits application performance.

Earlier vector supercomputers [23] relied on interleaved
SRAM memory banks to provide high bandwidth at moderate
latency, but modern vector supercomputers [6, 17] now imple-
ment main memory with the same commodity DRAM parts
as other sectors of the computing industry, for improved cost,
power, and density. As with conventional scalar processors,
designers of all classes of vector machine, from vector super-
computers [6] to vector microprocessors [8], are motivated to
add vector data caches to improve the effective bandwidth and
latency of a DRAM main memory.

For vector codes with temporal locality, caches can pro-
vide a significant boost in throughput and a reduction in the
energy consumed for off-chip accesses. But, even for codes

∗This work was partly funded by NSF CAREER Award CCR-0093354
and by the Cambridge-MIT Institute.

with significant reuse, it is important that the cache not im-
pede the flow of data from main memory. Existing non-
blocking vector cache designs are complex since they must
track all primary misses and merge secondary misses using re-
play queues [1, 11]. This complexity also pervades the vector
unit itself, as element storage must be reserved for all pending
data accesses in either vector registers [10, 18] or a decoupled
load data queue [9].

In this paper, we introduce vector refill/access decoupling,
which is a simple and inexpensive mechanism to sustain high
memory bandwidths in a cached vector machine. A scalar
unit runs ahead queuing compactly encoded instructions for
the vector units, and a vector refill unit quickly pre-executes
vector memory instructions to detect which of the lines they
will touch are not in cache and should be prefetched. This
exact non-speculative hardware prefetch tries to ensure that
when the vector memory instruction is eventually executed,
it will find data already in cache. The cache can be simpler
because we do not need to track and merge large numbers
of pending misses. The vector unit is also simpler as less
buffering is needed for pending element accesses. Vector re-
fill/access decoupling is a microarchitectural technique that is
invisible to software, and so can be used with any existing
vector architecture.

We also propose new vector segment memory instructions,
which encode common two-dimensional vector access pat-
terns such as array-of-structures and loop raking. Vector seg-
ment instructions improve performance by converting some
strided accesses into contiguous bursts, and improve the effi-
ciency of refill/access decoupling by reducing the number of
cache tag probes required by the refill engine.

We describe an implementation of these techniques within
the context of the SCALE vector-thread processor [19] and
provide an evaluation over a range of scientific and embedded
kernels. Our results show an improvement in performance
and a dramatic reduction in the hardware resources required
to sustain high throughput in long latency memory systems.

2. Memory Bandwidth-Delay Products

The bandwidth-delay product for a memory system is the
peak memory bandwidth, B, in bytes per processor cycle mul-
tiplied by the round-trip access latency, L, in processor cycles.
To saturate a given memory system, a processor must support
at least (B/b)×L independent b-byte elements in flight simul-
taneously. The relative latency of DRAM has been growing,
while at the same time DRAM bandwidth has been rapidly
improving through advances such as pipelined accesses, mul-
tiple interleaved banks, and high-speed double-data-rate in-
terfaces. These trends combine to yield large and growing



bandwidth-delay products. For example, a current Pentium-
4 desktop has around two bytes per processor cycle of main
memory bandwidth with around 400 cycles of latency, repre-
senting around 200 independent 4-byte elements. A Cray X1
vector unit has around 32 bytes per cycle of global memory
bandwidth with up to 800 cycles of latency across a large mul-
tiprocessor machine, representing around 1,600 independent
8-byte words [6].

Each in-flight memory request has an associated hardware
cost. The access management state is the information re-
quired to track an in-flight access, and the reserved element
data buffering is the storage space into which the memory
system will write returned data. In practice, it is impossible
to stall a deeply pipelined memory system, and so element
buffering must be reserved at request initiation time. The cost
of supporting full memory throughput grows linearly with the
bandwidth-delay product, and it is often this control overhead
rather than raw memory bandwidth that limits memory sys-
tem performance.

Vector machines are successful at saturating large
bandwidth-delay product memory systems because they ex-
ploit structured memory access patterns, groups of indepen-
dent memory accesses whose addresses form a simple pat-
tern and therefore are known well in advance. Unit-stride and
strided vector memory instructions compactly encode hun-
dreds of individual element accesses in a single vector in-
struction [17, 23], and help amortize the cost of access man-
agement state across multiple elements.

At first, it may seem that a cache also exploits structured
access patterns by fetching full cache lines (and thus many
elements) for each request, and so a large bandwidth-delay
memory system can be saturated by only tracking a relatively
small number of outstanding cache line misses. Although
each cache miss brings in many data elements, the processor
cannot issue the request that will generate the next miss until it
has issued all preceding requests. If these intervening requests
access cache lines that are still in flight, the requests must be
buffered up until the line returns, and this buffering grows
with the bandwidth-delay product. Any request which misses
in the cache has twice the usual reserved element data storage:
a register is reserved in the processor itself plus buffering is
reserved in the cache.

Data caches amplify memory bandwidth, and in doing so
they can increase the effective bandwidth-delay product. For
example, consider a non-blocking cache with four times more
bandwidth than main memory, and an application which ac-
cesses a stream of data and reuses each operand three times.
The processor must now support three times the number of
outstanding elements to attain peak memory throughput. With
reuse, the bandwidth-delay product of a cached memory sys-
tem can be as large as the cache bandwidth multiplied by the
main memory latency.

3. Vector Refill/Access Decoupling
An alternative to buffering processor requests after they

are issued is to prefetch cache data ahead of time so that the
processor sees only hits. A successful prefetching scheme
can dramatically improve the cost-performance of a large

bandwidth-delay memory system. The goals of a prefetch-
ing scheme are to fetch only the required data, to do so before
the processor requires the data, and to not evict useful data
from the cache. In this section, we introduce the refill/access
decoupling scheme and describe how it achieves these goals.

Figure 1 shows our baseline system, a cached decoupled
vector machine (DVM) broadly similar to previous decou-
pled vector architectures [9, 25]. DVM includes three com-
ponents: main memory, a non-blocking cache, and a decou-
pled vector processor. In this paper, we treat main mem-
ory as a simple pipeline with variable bandwidth and latency.
The non-blocking cache includes a tag array, data array, and
miss status handling registers (MSHRs). The decoupled vec-
tor processor contains a control processor (CP), vector execu-
tion unit (VEU), vector load unit (VLU), and vector store unit
(VSU). A decoupled vector machine with refill/access decou-
pling (DVMR) extends DVM with a vector refill unit (VRU).

3.1. Non-Blocking Cache

The non-blocking cache shown in Figure 1 is similar to
other non-blocking caches found both in scalar [20] and vec-
tor machines [1, 11]. The cache supports both primary misses
and secondary misses. A primary miss is the first miss to a
cache line and causes a refill request to be sent to main mem-
ory, while secondary misses are accesses which miss in the
cache but are for the same cache line as an earlier primary
miss. Misses are tracked in the MSHR using primary miss
tags and replay queues. Primary miss tags hold the address
of an in-flight refill request and are searched on every miss
to determine if it is a secondary miss. A primary miss al-
locates a new primary miss tag to hold the address, issues a
refill request, performs an eviction if needed, and adds a new
replay queue entry to a linked list next to the primary miss
tag. Replay queue entries contain information about the ac-
cess including the corresponding cache line offset, the byte
width, the destination register for loads, and pending data for
stores. A secondary miss adds a new replay queue entry to
the appropriate replay queue, but does not send an additional
refill request to main memory.

3.2. Basic Decoupled Vector Processor

In a decoupled vector processor the CP runs ahead and
queues vector memory or compute commands for the vector
units. The VEU may include a heavily pipelined datapath or
multiple parallel execution units to exploit data level compute
parallelism. The VLU provides access/execute decoupling,
while the VSU provides store decoupling.

It is useful to explain DVM by following a single vector
load request through the system. The CP first sends a vec-
tor load command to the Vector-CmdQ. When it reaches the
front, the command is broken into two pieces: the address
portion is sent to the VLU-CmdQ while the register writeback
portion is sent to the VEU-CmdQ. The VLU then breaks the
long vector load command into multiple smaller subblocks.
For each subblock it reserves an entry in the vector load data
queue (VLDQ) and issues a cache request. On a hit, the data
is loaded from the data array into the reserved VLDQ entry.
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Figure 1: Basic decoupled vector machine (DVM). The vector pro-
cessor is made up of several units including the control processor
(CP), vector execution unit (VEU), vector load unit (VLU), and vec-
tor store unit (VSU). The non-blocking cache contains miss sta-
tus handling registers (MSHR), a tag array, and a data array. Re-
fill/access decoupling is enabled by adding the highlighted compo-
nents: a vector refill unit (VRU) and corresponding command queue.

The VLDQ enables the VLU to run ahead performing many
memory requests while the VEU trails behind and moves data
in FIFO order into the architecturally visible vector registers.
The VLDQ acts as a small memory reorder buffer since re-
quests can return from the memory system out-of-order: hits
may return while an earlier miss is still outstanding. The VSU
trails behind both the VLU and VEU and writes results to the
memory system.

Decoupling is enabled by queues which buffer data and
control information for the trailing units to allow the leading
units to run ahead. Figure 2 illustrates the resource require-
ments for DVM. The distance that the CP may run ahead is
determined by the size of the various vector command queues.
The distance that the VLU may run ahead is constrained by
the VEU-CmdQ, VSU-CmdQ, VLDQ, replay queues, and
primary miss tags. The key observation is that to tolerate in-
creasing memory latencies these resources must all be pro-
portional to the memory bandwidth-delay product and thus
can become quite large in modern memory systems. In this
system the VLDQ is the reserved data element state, while
the replay queues and the primary miss tags are the access
management state required to support the in-flight memory
requests.

3.3. Vector Refill Unit
We enable refill/access decoupling by extending a basic

decoupled vector machine with a vector refill unit (VRU). The
VRU and associated VRU-CmdQ are shown highlighted in
Figure 1. The VRU receives the same commands as the VLU,
and it runs ahead of the VLU issuing refill requests for the
associated cache-lines. The primary cost of the VRU is an ad-
ditional address generator. Ideally, the VRU runs sufficiently
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Figure 2: Queuing resources required in basic DVM. Decoupling
allows the CP and VLU to run ahead of the VEU. Many large queues
(represented by longer arrows) are needed to saturate memory.
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Figure 3: Queuing resources required in a DVMR. Refill/access de-
coupling requires fewer resources to saturate the memory system.

ahead to allow the VLU to always hit in the cache. A refill
request only brings data into the cache, and as such it needs
a primary miss tag but no replay queue entry. It also does
not need to provide any associated reserved element buffer-
ing in the processor, and refill requests which hit in cache due
to reuse in the load stream are ignored. In this paper we as-
sume that stores are non-allocating and thus the VRU need
not process vector store commands.

Figure 3 illustrates the associated resource requirements
for a decoupled vector machine with refill/access decoupling
(DVMR). The VRU is able to run ahead with no need for
replay queues. The VLU runs further behind the CP com-
pared to the basic decoupled vector machine shown in Fig-
ure 2, and so the Vector-CmdQ must be larger. However, since
the VLU accesses are typically hits the distance between the
VLU and VEU is shorter and the VLDQ is smaller. With re-
fill/access decoupling, the only resources that must grow to
tolerate an increasing memory latency are the Vector-CmdQ
and the number of primary miss tags. This scaling is very ef-
ficient since the Vector-CmdQ holds vector commands which
each compactly encode many element operations and the pri-
mary miss tags must only track non-redundant cache line re-
quests. The only reserved element buffering involved in scal-
ing refill/access decoupling is the efficient storage provided
by the cache itself.

A DVMR implementation will need to carefully manage
the relative steady-state rates of the VLU and VRU. If the
VRU is able to run too far ahead it will start to evict lines
which the VLU has yet to even access, and if the VLU can
outpace the VRU then the refill/access decoupling will be in-
effective. In addition to the rates between the two units, an
implementation must also ensure that the temporal distance



between the two units is large enough to cover the memory
latency. Throttling the VLU and/or the VRU can help con-
strain these rates and distances to enable smoother operation.

One disadvantage of refill/access decoupling is an increase
in cache request bandwidth: the VRU first probes the cache to
generate a refill and then the VLU accesses the cache to actu-
ally retrieve the data. This overhead is usually low since the
VRU must only probe the cache once per cache line. Another
important concern with refill/access decoupling is support for
unstructured load accesses (i.e. indexed vector loads). Lim-
ited replay queuing is still necessary to provide these with
some degree of access/execute decoupling.

4. Vector Segment Memory Accesses
Vector unit-stride accesses move consecutive elements in

memory into consecutive elements in a single vector regis-
ter. Although these one-dimensional unit-stride access pat-
terns are very common, many applications also include two-
dimensional access patterns where consecutive elements in
memory are moved into different vector registers. For ex-
ample, assume that an application needs to process an array
of fixed-width structures such as an array of image pixels or
polygon vertices. A programmer can use multiple strided ac-
cesses to load the structures into vector registers such that the
same field for all structures is in the same vector register. The
following sequence of vector instructions uses three strided
vector accesses (each with a stride of three) to load an array
(A) of RGB pixel values into the vector registers vr1, vr2,
and vr3:

la r1, A
li r2, 3
vlbst vr1, r1, r2
addu r1, r1, 1
vlbst vr2, r1, r2
addu r1, r1, 1
vlbst vr3, r1, r2

In this example, the programmer has converted a two-
dimensional access pattern into multiple one-dimensional ac-
cess patterns. Unfortunately, these multiple strided accesses
hide the spatial locality in the original higher-order access
pattern and can cause poor performance in the memory sys-
tem including increased bank conflicts, wasted address band-
width, additional access management state, and wasted non-
allocating store data bandwidth. A different data layout might
enable the programmer to use more efficient unit-stride ac-
cesses, but reorganizing the data layout requires additional
overhead and is complicated by external API constraints.

We propose vector segment memory accesses as a new
vector mechanism which more directly captures the two-
dimensional nature of many higher-order access patterns.
They are similar in spirit to the stream loads and stores found
in stream processors [4, 16]. As an example, the following
sequence of vector instructions uses a segment access to load
an array of RGB pixel values.

la r1, A
vlbseg 3, vr1, r1

The vlbseg instruction has three fields: a segment length
encoded as an immediate, a base destination vector register

specifier, and a scalar base address register specifier. The in-
struction writes each element of each segment into consec-
utive vector registers starting with the base destination vec-
tor register. In this example, the red values would be loaded
into vr1, the green values into vr2, and the blue values into
vr3. The segment length is therefore limited by the number
of vector registers. The basic vector segment concept can be
extended to include segments which are offset at a constant
stride enabling strided vector segment accesses. Traditional
strided accesses can then be reduced both in the vector ISA
and the implementation to strided segment accesses with a
segment length of one.

Segment accesses are useful for more than just array-of-
structures access patterns; they are appropriate any time a pro-
grammer needs to move consecutive elements in memory into
different vector registers. Segments can be used to efficiently
access sub-matrices in a larger matrix or to implement vector
loop-raking.

5. The SCALE Decoupled Vector Machine
We evaluate vector refill/access decoupling and vector seg-

ment accesses in the context of the SCALE vector-thread pro-
cessor [19] shown in Figure 4. For this work, we use SCALE
as a more traditional decoupled vector machine and do not
make use of its more advanced threading features. SCALE
is roughly similar to the more abstract DVMR shown in Fig-
ure 1 with several key differences: the VEU contains four
execution lanes with clustered functional units, the VLU and
VSU support segment accesses, and the non-blocking cache
is divided into four banks. In this section we first describe
the SCALE decoupled vector processor and the SCALE non-
blocking cache before discussing the SCALE vector refill
unit.

5.1. SCALE Decoupled Vector Processor
The single-issue MIPS-RISC scalar control processor ex-

ecutes the control code and issues commands to the vector
units. A vector configuration command allows the control
processor to adjust the maximum vector length based on the
register requirements of the application. A vector fetch com-
mand sends a block of compute instructions to the vector ex-
ecution unit, and these may include indexed load and store
operations. A vector load or vector store command specifies
a structured memory access that reads data from or writes data
to the vector registers in the VEU. Each lane in the VEU has
four execution clusters and provides a peak per-cycle band-
width of one load element, one store element, and four cluster
operations. Cluster 0 executes indexed loads and stores, and
uses a load data queue (LDQ) and store address queue (SAQ)
to provide access/execute decoupling.

The VLU and VSU each process one vector command at
a time using either a single unit-stride address generator or
per-lane segment address generators. The address genera-
tors step through each vector command and break them into
subblocks with up to four elements. The VLU manages per-
lane VLDQs. For unit-stride commands, the VLU allocates
VLDQ entries in parallel across lanes for each cache access,
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Figure 4: Microarchitecture of the SCALE decoupled vector machine. For clarity the figure omits the CP ports into the cache.

and writes the data elements into the VLDQs in parallel when
the access returns. For segment commands, the VLU may al-
locate multiple VLDQ entries in each lane for each segment
access. After the data is read from the cache, it is held in per-
lane segment buffers next to the cache banks and returned to
each lane’s VLDQ at a rate on one element per cycle. Since
both VLU and indexed lane load requests share the write-
back bus into the lane, they must arbitrate for this resource.
The VSU sends unit-stride store data to the cache in parallel
for each access. Segment store data is written into per-lane
buffers next to the cache banks at a rate of one element per
cycle, and then written into the cache using a single access.

As with most vector machines, SCALE requires software
memory fences to enforce ordering when there are potential
memory dependencies. These are implemented by stalling the
head of the Vector-CmdQ until the VEU, VLU, and VSU are
idle. Importantly, this does not block the control processor
and VRU from continuing to run ahead.

5.2. SCALE Non-Blocking Cache
The 32 KB non-blocking first-level unified instruction and

data cache is comprised of four banks which each support
one request of up to 16 B per cycle. The cache has 32 B lines

and uses CAM-tags to provide 32-way set-associativity with
FIFO replacement. The cache has 16 B load and store seg-
ment buffers for every lane/bank pair, and we expect that these
can be efficiently implemented under the data crossbar. A pri-
ority arbiter decides which of the requesters can access each
bank; thus the maximum throughput is four requests per cycle
if those requests go to different banks. The cache has a two-
cycle hit latency. Arbitration and tag check occur in the first
cycle and data is read from or written to the data bank on the
second cycle. Requests that miss in the cache still consume an
unused cycle of writeback bandwidth into the corresponding
requester.

As in the abstract non-blocking cache discussed in Sec-
tion 3, primary misses allocate primary miss tags and both
primary and secondary misses (from requesters other than the
VRU) require a corresponding replay queue entry. On a miss,
a refill request and the index of a victim line (if needed) are
placed in the bank’s memory queue (MemQ). When the entry
reaches the head of the MemQ, the bank first sends the refill
request to memory, then steals unused bank cycles to read the
victim and issue a memory writeback request. When a refill
returns from memory it is immediately written back into the
data array and the replay queue is used to replay one primary



or secondary miss per cycle. Since multiple banks can be re-
turning load replay data or load hit data to the same requester
on a cycle, replays must arbitrate for writeback ports through
the main cache arbiter. The bank blocks if the MemQ is full
or if there are no more pending tags or replay queue entries.

The SCALE cache is a write-back/no-write-allocate cache.
Store data for pending store misses is held in a per-bank pend-
ing store data buffer and store replay queue entries contain
pointers into this buffer. Secondary store misses are merged
where possible. Non-allocating stores are held in the replay
queues while waiting to be sent to memory and are converted
to allocating stores if there is a secondary load miss to the
same cache line.

5.3. SCALE Vector Refill Unit
The VRU processes vector load commands and issues up

to one refill request per cycle to the cache. Since the VRU
does not use replay queues, the VRU is not blocked access to
the bank when there are no free replay queue entries.

The VRU has two refill modes: unit-stride and strided. It
uses the unit-stride refill mode for unit-stride vector loads and
segment/strided vector loads with positive strides less than the
cache line size. In this mode, the VRU calculates the number
of cache lines in the memory footprint once when it begins
processing a command, and then issues cache-line refill re-
quests to cover the entire region. The hardware cost for the
segment/strided conversion includes a comparator to deter-
mine the short stride and a small multiplier to calculate the
vector length (7 bits) times the stride (5 bits). For the strided
refill mode, the VRU repeatedly issues a refill request to the
cache and increments its address by the stride until it covers
the entire vector. It also issues an additional request whenever
a segment straddles a cache-line boundary.

Three important throttling techniques prevent the VLU and
the VRU from interfering with each other. (1) Ideally, the
VRU runs far enough ahead so that all of the VLU accesses
hit in the cache. However, when the program is memory band-
width limited, the VLU can always catch up with the VRU.
The VLU interference wastes cache bandwidth and miss re-
sources and can reduce overall performance. As a solution,
the VLU is throttled to prevent it from having more than a
small number of outstanding misses. (2) The VLU has four
address generators and can therefore process segment/strided
vector loads that hit in the cache at a faster rate than the VRU.
Whenever the VLU finishes a vector load command before
the VRU, the VRU aborts the command. (3) If the VRU is
not constrained, it will run ahead and use all of the primary
miss tags, causing the cache to block and preventing other
requesters from issuing cache hits. The VRU is throttled to
reserve one or two primary miss tags for the other requesters.

When a program is compute-limited, the VRU may run ar-
bitrarily far ahead and evict data that it has prefetched into
the cache before the VLU even accesses it. To avoid this,
the VRU is also throttled based on the distance that it is run-
ning ahead of the VLU. To track distance, the VRU counts
the number of cache-line requests that it makes for each vec-
tor load command (including hits). After finishing each com-
mand, it increments its total distance count and enqueues that

command’s distance count in its DistQ (see Figure 4). When-
ever the VLU finishes a vector load, the VRU pops the head
of the DistQ and decrements its total distance count by the
count for that command. A single distance count is sufficient
for programs that use the cache uniformly, but it can fail when
a program has many accesses to a single set in the cache. As
a solution, the VRU maintains per-set counts, and throttles
based on the maximum per-set distance. To reduce the hard-
ware cost, the distance-sets that the VRU divides its counts
into may be more coarse-grained than the actual cache sets.

6. Evaluation
Several scientific and embedded kernels with varying

amounts and types of access parallelism were implemented
for the SCALE vector-thread architecture. We evaluate vector
refill/access decoupling and vector segment accesses in terms
of performance and resource utilization for three machine
configurations: a basic decoupled vector machine (DVM),
a decoupled vector machine with refill/access decoupling
(DVMR), and a decoupled scalar machine (DSM). We use
SCALE as our DVMR design, and we disable the vector re-
fill unit to model the DVM machine. For the DSM machine,
we dynamically convert vector memory accesses into scalar
element accesses to model an optimistic scalar processor with
four load-store units and enough decoupling resources to pro-
duce hundreds of in-flight memory accesses. We also evalu-
ate throttling mechanisms and memory latency scaling for re-
fill/access decoupling. Main memory is modeled with a sim-
ple pipelined magic memory that has a bandwidth of 8 bytes
per processor clock cycle.

6.1. Benchmarks
Table 1 lists the benchmarks used in this evaluation. All

vector code was hand-written in assembler and linked with C
code compiled for the MIPS control processor using gcc. Re-
sults in the table are intended to approximately indicate each
benchmark’s peak performance given the processor, cache,
and memory bandwidth constraints. They are based on a
pseudo-ideal SCALE configuration with very large decou-
pling queues, VRU refill/access decoupling, and zero cycle
main memory with a peak bandwidth of 8 B/cycle. The results
throughout this paper are normalized to this performance.

The first eight benchmarks are custom kernels chosen to
exercise various memory access patterns. vvadd-word,
vvadd-byte, and vvadd-cmplx all perform vector-
vector additions, with vvadd-cmplx making use of seg-
ment accesses to read and write the interleaved complex data.
vertex is a graphics kernel which projects 3-D vertices
in homogeneous coordinates onto a 2-D plane using four-
element segment accesses to load and store the vertices. fir
performs a 35-tap finite impulse response filter by multiplying
vectors of input elements by successive tap coefficients while
accumulating the output elements. Successive vector-loads
are offset by one element such that each element is loaded
35 times. transpose uses strided segment loads and unit-
stride stores to perform an out-of-place matrix transposition
on word element data. The 512×512 data set size has a stride



Benchmark Input Size Access Pattern Avg Ops/ Elements/ Cache Mem
Name Indexed Unit Stride Strided Segment VL Cycle Cycle Bytes/ Bytes/Cycle

Load Store Load Store Load Store Load Store Total Muls Load Store Cycle Total Load Store
vvadd-word 250k elements 2 W 1 W 64.0 0.67 0.00 1.33 0.67 8.00 8.00 5.33 2.67
vvadd-byte 1M elements 2 B 1 B 64.0 1.88 0.00 3.76 1.88 5.64 6.57 3.76 2.81
vvadd-cmplx 125k cmplx nums 2 W[2]:* 1 W[2]:* 32.0 0.67 0.00 1.33 0.67 7.99 8.00 5.33 2.67
vertex 100k 4W vertices 1 W[4]:* 1 W[4]:* 28.0 9.55 3.82 0.96 0.96 7.64 7.65 3.82 3.82
fir 500k elements 1 H 1 H 124.0 7.36 3.58 3.61 0.10 7.42 0.43 0.20 0.22
transpose400 400×400 words 8 W 1 W[8]:1600 16.0 0.00 0.00 1.00 1.00 8.00 8.00 4.00 4.00
transpose512 512×512 words 8 W 1 W[8]:2048 16.0 0.00 0.00 0.96 0.96 7.65 7.66 3.83 3.83
idct 20k 8×8 blocks 8 H 8 H 1 H[8]:* 1 H[8]:* 12.0 8.80 1.45 0.96 0.96 3.86 3.85 1.93 1.92
rgbyiq 320×240 3B pixels 1 B[3]:* 1 B[3]:* 28.0 9.33 4.00 1.33 1.33 2.67 3.91 1.33 2.58
rgbcmyk 320×240 3B pixels 1 W 1 B[3]:* 32.0 6.80 0.00 1.20 0.40 2.80 3.00 1.20 1.80
hpg 320×240 1B pixels 3 B 1 B 63.6 10.77 3.91 2.93 0.98 3.92 2.54 1.01 1.54
fft 4096 points

√
4 H 4 H 6 H:? 4 H:? 31.4 3.25 1.00 1.50 1.08 5.16 1.13 0.44 0.69

rotate 742×768 bits 8 B 8 B:-768 15.5 9.01 0.00 0.47 0.47 0.94 7.99 0.47 7.52
dither 256×256 1B pixels

√ √
4 H 1 H 1 B:254 31.3 5.09 0.65 1.11 0.27 2.26 0.25 0.22 0.03

Table 1: Benchmark characterization. The Access Pattern columns display the types of memory access streams used by each benchmark.
The entries are of the format N{B, H,W}[n] : S, where N indicates the number of streams of this type, B, H, or W indicates the element
width (byte, half-word, or word), [n] indicates the segment size in elements, and S indicates the stride in bytes between successive elements
or segments. A stride of ’*’ indicates that the segments are consecutive, and a stride of ’?’ indicates that the stride changes throughout the
benchmark. The Avg VL column displays the average vector length used by the benchmark. The per-cycle statistics are for the pseudo-ideal
SCALE configuration that is used as a baseline for normalization throughout this paper.

which maps columns to a single set in the cache. idct per-
forms an in-place 2-D 8×8 inverse discrete cosine transform
on a series of blocks using the LLM algorithm. The imple-
mentation first uses segment vector loads and stores to per-
form a 1-D IDCT on the block rows, then uses unit-stride ac-
cesses to perform a 1-D IDCT on the columns.

The last six benchmarks are from the EEMBC consumer,
telecom, and office suites. rgbyiq and rgbcmyk are RGB
color conversion kernels which use three-element segment ac-
cesses to efficiently load input pixels. rgbyiq also uses seg-
ment accesses to store the converted pixels, but rgbcmyk
uses a packed word store to write its output data. hpg is a
two dimensional gray-scale convolution over one byte pixels
with a 3×3 high-pass filter. Each output pixel is a function of
nine input pixels, but the kernel is optimized to load each in-
put pixel three times and hold intermediate input row compu-
tations in registers as it produces successive output rows. fft
is a radix-2 Fast Fourier Transform based on a decimation-in-
time Cooley-Tukey algorithm. The algorithm inverts the inner
loops after the first few butterfly stages to maximize vector
lengths, resulting in a complex mix of strided and unit-stride
accesses. The benchmark performs the initial bit-reversal us-
ing unit-stride loads and indexed stores. rotate turns a bi-
nary image by 90o. It uses 8 unit-stride byte loads to feed
an 8-bit×8-bit block rotation in registers, and then uses 8
strided byte stores to output the block. dither performs
Floyd-Steinberg dithering which takes grey-scale byte pixels
as input and outputs a binary image. The benchmark uses a
strided byte access to load the input image and indexed loads
and stores to read-modify-write the bit-packed output image.
The dithering error buffer is updated with unit-stride accesses.

Table 1 shows that the kernels which operate on word data
drive memory at or near the limit of 8 B/cycle. vvadd-byte
and fir approach the limit of 4 load elements per cycle; and
vertex, fir, rgbyiq, and hpg approach the limit of 4
multiplies per cycle. Although input data sets were chosen to
be larger than the 32 KB cache, several benchmarks are able
to use the cache to exploit significant temporal locality. In par-
ticular, fir, dither, and fft have cache-to-memory band-

width amplifications of 17×, 9×, and 4.6× respectively. Sev-
eral benchmarks have higher memory bandwidth than cache
bandwidth due to the non-allocating store policy and insuffi-
cient spatial-temporal locality for store writeback merging.

6.2. Reserved Element Buffering
and Access Management State

Figure 5 presents three limit studies in which we restrict
either: (a) the reserved element buffering provided by the
VLDQs, (b) the number of primary miss tags, or (c) the num-
ber of replay queue entries. To isolate the requirements for
each of these resources, all of the other decoupling queue
sizes are set to very large values, and in each of the three stud-
ies the other two resources are unconstrained. For these limit
studies, the cache uses LRU replacement, and the DVMR dis-
tance throttling uses 32 distance-sets each limited to a dis-
tance of 24. Memory has a latency of 100 cycles.

The overall trend in Figure 5 shows that the DVMR ma-
chine is almost always able to achieve peak performance
with drastically fewer reserved element buffering and access
management resources compared to the DVM and DSM ma-
chines. All the machines must use primary miss tags to track
many in-flight cache lines. However, in order to generate
these misses, DVM and DSM also require 10s–100s of re-
play queue entries and reserved element buffering registers.
DVMR mitigates the need for these by decoupling refill re-
quests so that demand accesses hit in the cache.

With the 100 cycle memory latency, vvadd-word must
sustain 533 B of in-flight load data to saturate its peak load
bandwidth of 5.33 B/cycle (Table 1). This is equivalent to
about 17 cache lines, and the benchmark reaches its peak per-
formance with 32 primary miss tags. DVM accesses four
word elements with each cache access, and so requires two
replay queue entries per primary miss tag (64 total) and 256
VLDQ registers to provide reserved element buffering for
these in-flight accesses. In stark contrast, DVMR does not
require any VLDQ reserved elements or replay queue entries
to generate the memory requests. DSM issues independent
accesses for each of the eight words in a cache line and so
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(a) VLDQ entries (reserved element buffering).
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(b) Primary miss tags (access management state).
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(c) Replay queue entries (access management state).

Figure 5: Performance scaling with increasing reserved element buffering and access management resources. In (a), the x-axis indicates the
total number of VLDQ entries across all four lanes, and in (b) and (c) the x-axis indicates the total number of primary miss tags and replay
queue entries across all four cache banks. For all plots, the y-axis indicates performance relative to the pseudo-ideal configuration whose
absolute performance is given in Table 1. DVMR is shown with solid lines, DVM with dashed lines, and DSM with dotted lines. The lines
with circle markers indicate segment vector-memory accesses converted into strided accesses.



requires both 256 replay-queue entries and 256 reserved el-
ement buffering registers to achieve its peak performance.
However, even with these resources it is still unable to saturate
the memory bandwidth because, (1) each cache miss wastes a
cycle of writeback bandwidth into the lanes, and (2) the lanes
have bank conflicts when they issue scalar loads and stores.
The other load memory bandwidth limited benchmarks share
similarities with vvadd-word in their performance scaling.

The vvadd-byte kernel makes it even more difficult for
DVM and DSM to drive memory since each load accesses
four times less data than in vvadd-word. Thus, to gener-
ate a given amount of in-flight load data, they require four
times more replay queue entries and VLDQ registers. Fur-
thermore, the wasted lane writeback bandwidth and cache ac-
cess bandwidth caused by misses are much more critical for
vvadd-byte. DVM’s cache misses waste half of the critical
four elements per cycle lane writeback bandwidth, and so its
peak performance is only half of that for DVMR. To reach the
peak load bandwidth, DVMR uses 16 VLDQ registers (4 per
lane) to cover the cache hit latency without stalling the VLU.
The rgbyiq and rgbcmyk benchmarks have similar char-
acteristics to vvadd-byte since they operate on streams of
byte elements, but their peak throughput is limited by the pro-
cessor’s compute resources.

Refill/access decoupling can provide a huge benefit for ac-
cess patterns with temporal reuse. The hpg benchmark must
only sustain 1 B/cycle of load bandwidth to reach its peak
throughput, and so requires 100 B of in-flight data. However,
because the benchmark reads each input byte three times,
DVM and DSM each require 300 reserved element buffer-
ing registers for the in-flight data. DVM accesses each 32 B
cache line 24 times with four-element vector-loads, and thus
requires 72 replay queue entries to sustain the three in-flight
cache misses; and DSM needs four times this amount. DVMR
is able to use dramatically fewer resources by prefetching
each cache line with a single refill request and then discarding
the two subsequent redundant requests.

Refill/access decoupling can also provide a large benefit
for programs that only have occasional cache misses. To
achieve peak performance,rotate, dither, and firmust
only sustain an average load bandwidth of one cache line
every 68, 145, and 160 cycles respectively. However, to
avoid stalling during the 100 cycles that it takes to service
these occasional cache misses, DVM must use on the order of
100 VLDQ registers as reserved storage for secondary misses
(fir and rotate) or to hold hit-under-miss data (dither).
DVMR attains high performance using drastically fewer re-
sources by generating the cache misses long before the data
is needed.

For benchmarks which use segment vector-memory ac-
cesses, we evaluate their effect by dynamically converting
each n-element segment access into n strided vector-memory
accesses. Figure 5 shows that several benchmarks rely on
segment vector-memory accesses to attain peak performance,
even with unlimited decoupling resources. Segments can
improve performance over strided accesses by reducing the
number of cache accesses and bank conflicts. For example,
without segments, the number of bank conflicts increases by

Benchmark Vector-CmdQ Total-Distance Set-Distance-24
Name (size) (cache lines) (sets)

1024 256 64 768 100 24 2 4 8 16 32
vvadd-word 0.03 0.03 1.00 1.00 1.00 0.32 0.63 1.00 1.00 1.00 1.00
vvadd-byte 0.02 0.95 0.90 0.96 1.00 0.48 0.92 0.94 0.98 0.98 0.92
vvadd-cmplx 0.04 0.04 0.96 1.00 1.00 0.32 0.63 1.00 1.00 1.00 1.00
vertex 0.08 0.40 0.97 0.99 1.00 0.44 0.80 1.00 1.00 1.00 0.99
idct 0.15 0.98 0.88 1.00 0.97 0.65 0.81 0.96 0.97 0.99 1.00
fir 0.99 1.00 0.99 1.00 0.97 0.79 0.84 0.92 0.99 1.00 0.99
transpose400 0.12 1.00 0.96 1.00 0.99 0.30 0.31 0.78 0.99 1.00 1.00
transpose512 0.25 0.25 0.25 0.25 0.25 0.98 1.00 1.00 1.00 1.00 1.00
rgbyiq 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00
rgbcmyk 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
hpg 0.19 0.26 0.98 0.19 0.99 0.46 0.63 0.97 1.00 0.52 0.19
fft 1.00 0.98 0.96 0.97 0.98 0.85 0.94 0.97 0.97 0.97 0.97
rotate 0.99 0.98 0.94 0.99 0.99 0.94 0.96 0.98 1.00 1.00 0.99
dither 0.98 0.96 0.96 1.00 0.95 0.61 0.71 0.87 0.93 0.99 1.00

Table 2: Performance for various refill distance throttling mecha-
nisms. For each benchmark, the performance values are normalized
to the best performance for that benchmark attained using any of the
mechanisms.

2.8× for rgbcmyk, 3.4× for vertex, 7.5× for rgbyiq,
and 22× for transpose400. Segments also improve lo-
cality in the store stream, and thereby alleviate the need to
merge independent non-allocating stores in order to optimize
memory bandwidth and store buffering resources.

Although DVMR always benefits from segment accesses,
DVM is better off with strided accesses when reserved ele-
ment buffering resources are limited. This is because a strided
pattern is able to use the available VLDQ registers to generate
more in-flight cache misses by first loading only one element
in each segment, effectively prefetching the segment before
the subsequent strided accesses return to load the neighboring
elements.

6.3. Refill Distance Throttling

We next evaluate mechanisms for throttling the distance
that the refill unit runs ahead of the VLU. Table 2 presents re-
sults for several throttling mechanisms at a memory latency of
400 cycles. The first group of columns evaluate having no ex-
plicit throttling other than the size of the Vector-CmdQ. With
a size of 1024, many of the benchmarks have dismal perfor-
mance as the VRU evicts prefetched data from the cache be-
fore the VLU has a chance to access it. Simply reducing the
queue size to 64 turns out to be an effective throttling tech-
nique. However, doing so can also over-constrain the refill
unit, as seen with vvadd-byte and idct. In general, the
command queue size is not a robust technique for throttling
the refill unit since the distance that it can run ahead depends
on both the vector-length and the percentage of queued com-
mands that are vector-loads.

The Total-Distance and Set-Distance-24 results in Table 2
evaluate directly throttling the distance that the refill unit is
allowed to run ahead of the VLU. These schemes use the dis-
tance counting mechanism described in Section 5.3 with the
Vector-CmdQ size set to 1024. When only one count is used to
limit the VRU distance to 768 cache lines (75% of the cache)
or 100 cache lines (the memory bandwidth delay product),
most benchmarks perform very well. However, the refill unit
still runs too far ahead for transpose512 since its accesses
tend to map to a single set in the cache.
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Figure 6: Cache replacement policy interaction with refill distance
throttling. The refill unit uses the Set-Distance-24 throttling mecha-
nism, and the x-axis increases the maximum refill distance by vary-
ing the number of distance-sets from 1 to 32. The y-axis shows
performance relative to the pseudo-ideal SCALE configuration. The
results are for a memory latency of 400 cycles.

Memory latency (cycles): 4 25 50 100 200 400 800
SCALE Decoupled Vector Processor

VEU/VLU/VSU/VRU-CmdQs 8
VLDQ/LDQ/SAQ 32 (8)
Vector-CmdQ 4 8 16 32 64 128 256
Throttle distance per set 24
Distance-sets 1 1 1 2 4 8 16

Non-Blocking Cache: 32 KB, 32-way set-assoc., FIFO replacement
Replay queue entries 32 (8)
Pending store buffer entries 32 (8)
Primary miss tags 16(4) 32(8) 64(16) 64(16) 128(32) 256(64) 512(128)

Table 3: Restricted configuration resource parameters with scaling
memory latency. Per-lane and per-bank parameters are shown in
parentheses.

Breaking the distance count into sets allows the VRU to
run further ahead when access patterns use the cache uni-
formly, while still not exceeding the capacity when access
patterns hit a single set. The Set-Distance-24 results in Ta-
ble 2 use a varying granularity of distance-sets for the book-
keeping while always limiting the maximum distance in any
set to 24. With a memory latency of 400 cycles, only around
4–8 distance-sets are needed.

The VRU distance throttling assumes that the cache evic-
tion order follows its refill probe pattern, but a FIFO re-
placement policy can violate this assumption and cause re-
fill/access decoupling to breakdown. This occurs when a re-
fill probe hits a cache line which was brought into the cache
long ago and is up for eviction soon. This is a problem for
the hpg benchmark which has distant cache line reuse as it
processes columns of the input image. Figure 6 shows that its
performance initially increases as the refill unit is allowed to
run further ahead, but then falls off dramatically when it goes
far enough to evict lines before they are reused. dither
frequently reuses its pixel error buffers, but they are peri-
odically evicted from the cache, causing the VLU to get a
miss even though the corresponding refill unit probe got a
hit. Figure 6 shows how an LRU replacement policy fixes
these breakdowns in refill/access decoupling. To simplify the
cache hardware, an approximation of LRU would likely be
sufficient.

6.4. Memory Latency Scaling
We now evaluate a DVMR configuration with reasonable

decoupling queue sizes, and show how performance scales

with memory latency and processor frequency. Table 3 shows
the configuration parameters, and Figure 7a shows how per-
formance scales as the latency of the 8 B/cycle main mem-
ory increases from 4 to 800 cycles. To tolerate the increas-
ing memory bandwidth-delay product, only the Vector-CmdQ
size, the number of primary miss tags, and the distance-sets
were scaled linearly with the memory latency. We found it un-
necessary to scale the number of primary miss tags per bank
between the 50 and 100 cycle latency configurations because
applications tend to use these hard-partitioned cache bank re-
sources more uniformly as their number increases.

As shown in Figure 7a, eight of the benchmarks are able
to maintain essentially full throughput as the memory la-
tency increases. This means that the amount of in-flight
data reaches each benchmark’s achievable memory band-
width (Table 1) multiplied by 800 cycles—up to 6.25 KB. The
performance for benchmarks which lack sufficient structured
access parallelism (dither and fft) tapers as the memory
latency increases beyond their latency tolerance. hpg perfor-
mance drops off due to the cache’s FIFO eviction policy, and
transpose512 can not tolerate the long latencies since the
refill distance is limited to the size of one set.

In Figure 7b, we evaluate the effect of increasing the pro-
cessor clock frequency by 4× such that the memory latency
also increases by 4× and the bandwidth becomes 2 B/cycle.
We retain the same parameters listed in Table 3 for operat-
ing points with equal bandwidth-delay products. The results
show that the benchmarks which were limited by memory at
8 B/cycle still attain the same performance, while those which
were previously limited by compute or cache bandwidth im-
prove with the increased frequency.

6.5. Cache Address Bandwidth
The cache probes by the VRU increase energy through ad-

ditional tag checks, although this is partially mitigated by vec-
tor cache accesses which amortize address bandwidth over
many elements. For example, idct running on DVM with-
out segments requires only 0.63 cache accesses per load ele-
ment due to efficient unit-stride vector accesses. Adding seg-
ments reduce this to 0.19 accesses per load element. DVMR
with segments results in an increase to 0.28 accesses per load
element, but this is still far more energy efficient than DSM
(which requires one access for every load element).

VRU cache probes can also impact performance by in-
creasing the number of bank conflicts. Section 6.2 illustrated
that for applications with many misses, any performance im-
pact due to bank conflicts is drastically outweighed by the
performance benefit of refill/access decoupling. Bank con-
flicts are more of a concern for applications which always
hit in cache. Several of the benchmarks were tested with
datasets that completely fit in cache for the DVM and DVMR
configurations. The performance overhead of DVMR ranged
from less than 2% for vvadd-byte, vertex, and idct to
approximately 10% for vvadd-word and transpose for
certain matrix dimensions. It is important to remember that
for applications with even a few misses, refill/access decou-
pling quickly mitigates this performance overhead. Decreas-
ing the VRU priority in the cache arbiter can also drastically
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Figure 7: Performance scaling with increasing memory latency. The y-axis shows performance relative to the pseudo-ideal SCALE configu-
ration (with 8 B/cycle memory). In (b), the processor frequency is increased by 4× while retaining the same memory system.

reduce this performance overhead, but this would decrease the
effectiveness of refill/access decoupling. An interesting future
research direction is to investigate adaptive priority schemes
which adjust the VRU priority based on miss rate.

7. Related Work
There have been many proposals to improve performance

of large bandwidth-delay memory systems. We describe tech-
niques for both scalar and vector machines.

Superscalar processors use register renaming and out-
of-order execution to overlap multiple accesses to a non-
blocking cache [15]. In-flight access management state in-
cludes the instruction window and the memory reorder queue,
in addition to the cache’s primary miss tags and replay queue.
Reserved element buffering is provided by the multiported re-
named register file. These structures are very expensive, and
so current superscalars are typically limited to less than a hun-
dred elements in flight.

Scalar processors are usually augmented with various
software or hardware prefetching schemes, to help saturate
large bandwidth-delay memory systems [30]. Effective soft-
ware prefetching for scalar machines requires intimate and
implementation-specific details of the underlying memory hi-
erarchy and memory pipeline timing, and requires complex
compiler algorithms to avoid insertion of excess prefetch in-
structions [24]. The resulting prefetch schedules are not
performance-portable across different microarchitectures.

Hardware prefetching usually falls into one of two cat-
egories: miss-based prefetching and runahead prefetch-
ing. Miss-based prefetching schemes, including stream
buffers [14, 22], attempt to predict future cache misses based
on past cache miss address patterns. Stream buffers are more
complex than refill/access decoupling as they require stride
predictors, and usually have separate line storage buffers to
prevent cache pollution on prefetch mispredictions. Miss-
based prefetchers are only effective on longer vectors as they
require one or more misses to detect a pattern and so are
slower in starting to prefetch and waste memory bandwidth
on mispredictions past the end of the vector. In contrast, re-
fill/access decoupling is effective in situations where there are

many short vector accesses as it eliminates speculation, be-
gins fetching at an earlier point in the stream, and preloads
only the exact data required. Also, refill/access decoupling
can handle any number of independent streams as it does not
maintain any per-stream state. Stream buffers, however, have
the advantage of avoiding tag checks if the data is already in
cache whereas the VRU must probe the tags once per cache
line. Stream buffers can also prefetch scalar accesses whereas
refill/access decoupling only prefetches vectors.

Perhaps the previous techniques most similar in spirit to
refill/access decoupling are the various forms of scalar runa-
head processing. Baer and Chen [2] described a preloading
scheme that predicts the path a program will take and the ad-
dresses that will be accessed at each program counter value,
then tries to preload any missing cache lines. The look-ahead
PC is throttled to not run ahead by more than a fixed number
of cycles, partly to reduce cache pollution as in our decoupled
refill/access decoupling scheme but also to limit the amount
by which instruction stream prediction can go astray. The
run-ahead processor [7] and later out-of-order variants [21]
provide alternative implementations of the same general con-
cept, but only switch into run-ahead after a cache miss. These
scalar runahead schemes require complex hardware and are
less effective than vector refill/access decoupling, which re-
quires no speculation and amortizes prefetch cache probes
over multiple elements.

Decoupled architectures were initially developed to tol-
erate memory latency in scalar machines by separating ad-
dress generation and memory access from compute opera-
tions [26, 27]. Decoupled architectures are able to generate
large numbers of in-flight elements but require extensive re-
served element buffering in the decoupling queues, and also
primary miss tags and replay queues to track pending element
accesses if a non-blocking cache is added.

Several early vector machines designed around existing
scalar architectures had caches. Both the IBM 3090 [28] and
the VAX vector machines [3] would prefetch lines into the
cache when cache misses were encountered during a unit-
stride access, but did not prefetch past the current instruc-
tion. Fu and Patel [12] extended this by adding a strided
prefetch for misses on strided vector operations. The Taran-



tula design focused on providing high bandwidth to a large
level 2 cache [8]. A software vector prefetch instruction was
added (apparently because regular vector instructions could
not saturate main memory bandwidth [8]), which shares with
scalar software prefetch the unfortunate side effect of expos-
ing many implementation-specific details of the memory sys-
tem to software. The Cray SV1 added a vector data cache
with single word lines to avoid wasting bandwidth for non
unit-stride accesses, but then required hundreds of pending
tags to track enough element misses to saturate the mem-
ory bandwidth [5, 11]. The newer Cray X1 design employs
32 byte lines to reduce address bandwidth and tag overhead,
and has pooled replay queues implemented with hardware
linked lists [1]. The CODE architecture [18] is an alternative
implementation of vector decoupling which uses vector reg-
ister renaming to provide buffer space for decoupled loads.
Fully out-of-order vector machines [8, 10] also use renamed
vector registers to buffer outstanding requests.

The Imagine stream processor [16] is similar to a vector
machine but adds stream load/store instructions, similar to
the vector segment load/store instructions introduced in this
work. Imagine stream load/stores, however, are translated
into strided accesses at the memory controller which then tries
to dynamically reaggregate these into unit-stride bursts for the
DRAM. As with earlier vector supercomputers [29], Imagine
has a two-level hierarchical vector (stream) register file, and
uses the extra capacity to provide reserved element buffering
for memory traffic as well as to capture foreground register
spills. A recently proposed extension [13] would allow more
flexible access to the stream register file to improve its ability
to exploit some forms of temporal locality, but this adds in-
terconnect similar to that needed for a more flexible banked
cache and the programming model appears to be considerably
more complex than for regular memory accesses.

The RSVP stream processor [4] has decoupled stream
load/store engines which feed data directly into computations
rather than into intermediate vector registers. Reserved ele-
ment buffering is provided by FIFO buffers in the streaming
engines. To exploit some limited forms of temporal locality,
limited stream indexing is provided to access neighboring el-
ements in a stream.

8. Conclusion
We have described the considerable costs involved in sup-

porting large numbers of in-flight memory accesses, even for
vector architectures running applications that have large quan-
tities of structured memory access parallelism. Cache re-
fill/access decoupling dramatically reduces the cost of sat-
urating a high-bandwidth cached memory system by pre-
executing vector memory instructions to fetch data into the
cache just before it is needed, avoiding most per-element
costs. We also introduced new vector segment instructions,
which encode common two-dimensional access patterns in
a form that improves memory performance and reduces the
overhead of refill/access decoupling. Together these tech-
niques enable high-performance and low-cost vector memory
systems to support the demands of modern vector architec-
tures.
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