A New Era of Highly Specialized Computing Systems

Christopher Batten

Associate Professor @ ECE Department, Cornell University
Visiting Scholar
@ Computer Laboratory, University of Cambridge
Visiting Fellow @ Clare Hall, University of Cambridge
Clare Hall Colloquium
May 2018

Power Systems

Computer Engineering

Electrical Circuits

Electrical Devices

Signal Processing

Telecomm

ECE is the Study and Application of Electricity, Micro-Electronics, and Electro-Magnetism

Cornell was founded because of ECE!

Samuel Morse invented the telegraph (a digital communication device), but needed help building the network

Ezra Cornell built the first telegraph line (the beginning of telecommunications), and invested in the Western Union Telegraph Co

Ezra Cornell's investments created the fortune that eventually enabled the founding of Cornell University

Computer Engineering

The Computer Systems Stack

Application

Gap too large to bridge in one step (but there are exceptions, e.g., a magnetic compass)

Technology

The Computer Systems Stack

Sort an array of numbers
2,6,3,8,4,5 -> 2,3,4,5,6,8
Out-of-place selection sort

1. Find minimum number in input array
2. Move minimum number into output array
3. Repeat steps 1 and 2 until finished

C implementation of selection sort
void isort(int b[], int a[], int n) \{
for (int idx, $k=0 ; k<n ; k++$) \{ int $\min =100$; for (int i = 0; i < n; i++) \{ if ($\mathrm{a}[\mathrm{i}]<\min)$ \{ min $=a[i] ;$ idx = i;
\}
\}
$\mathrm{b}[\mathrm{k}]=\min$;
a[idx] = 100;
\}
\}

The Computer Systems Stack

	Application
	Algorithm
	Programming Language
	Operating System
	Instruction Set Architecture
	Microarchitecture
	Register-Transfer Level
	Gate Level
	Circuits
	Devices
	Technology

Mac OS X, Windows, Linux
Handles low-level hardware management

MIPS32 Instruction Set Instructions that machine executes

```
blez $a2, done
move $a7, $zero
li $t4, 99
move $a4, $a1
move $v1, $zero
li $a3, 99
lw $a5, 0($a4)
addiu $a4, $a4, 4
slt $a6, $a5, $a3
movn $v0, $v1, $a6
addiu $v1, $v1, 1
movn $a3, $a5, $a6
```


The Computer Systems Stack

How data flows through system

Boolean logic gates and functions

Combining devices to do useful work

Transistors and wires

Silicon process technology

Computer Systems: CS vs. EE vs. CE

Traditional
Computer Science

Computer Engineering is at the interface between hardware and software and considers the entire system

Traditional
Electrical Engineering

In its broadest definition, computer engineering is the development of the abstraction/implementation layers that allow us to execute information processing applications efficiently using available manufacturing technologies

Application Agenda

Algorithm

\square What is Computer Engineering?
OS
ISA
μ Arch
RTL
Trends in Computer Engineering
Trend \#1: Bell's "Law"
Trend \#2: Moore's "Law"

Gates

Circuits

Devices

Technology

Trends in Computer Engineering

- Bell's "Law"

How are application requirements changing?
\uparrow Moore's "Law" How are technology constraints changing?

Gordon Bell's "Law" of Computer Classes

Effect of Technology on Near Term Computer Structures

- Vice-President of Engineering at Digital Equipment Corporation
- Helped found Microsoft Research
- 1972 paper in IEEE Computer

Trend \#1: Bell's "Law"

Roughly every decade a new, smaller, lower priced computer class forms based on a new programming platform resulting in entire new industries

The "Traditional" Internet

 almost all of the information that is transmitted over the Internet

Emerging Trend Towards an Internet of Things

Interconnected "things" augmented with inexpensive embedded controllers, sensors, actuators to collect information and interact with the world

IoT Example: Spending the Day Hiking

IoT Smart Home

IoT Smart Power Distribution Grid

IoT Early Disaster Warning System

IoT Wildlife Tracking System

IoT Wearable Health Monitor

Trend \#1: Bell's "Law"

Bell's "Law" predicts an Internet-of-Things, and IoT cloud and embedded devices are increasingly demanding more performance and better efficiency

Gordon Moore's "Law" of Technology Scaling

The experts look ahead

Cramming more components onto integrated circuits

With unit cost falling as the number of components per circuit rises, by 1975 economics may dictate squeezing as many as $\mathbf{6 5 , 0 0 0}$ components on a single silicon chip

By Gordon E. Moore
Director, Research and Development Laboratories, Fairchild Semiconductor
division of Fairchild Camera and Instrument Corp.

The future of integrated electronics is the future of electronics iserf. The advantages of integration will bring about a
proliferation of electronics, pushing this science into many
Integrated circuits will lead to such wonders as home computers-or at least terminals connected to a central com-
puter-automatic controls for automobiles, and person-puter-automatic controls for automobiles, and persona portable communications equipment. The electro
watch needs only a display to be feasible today. But the biggest potential lies in the production of large systems. In telephone communications, integrated circuits in digital filters will separate channels on multiplex equipment. Integrated circuits will aso switch telephone circuit and perform data processing,
Computers will be more
Computers will be more powerful, and will be organized
in completely different ways. For example, memories built of integrated electronics may be distributed throughout the
The author
Dr. Gordon E. Moore is one of
the new breed of electronic
engineers, schooled in tie engineers, schooled in the
physical sciences rather the physical sciences rather than in
electronics. He earned a $\mathrm{B} . \mathrm{S}$. electronics. He eastred from the
denree in chersity of California and
Und University of California and
Ph.o. degree in physical chemistry from the Califor Institute of Technolog.g. H. Has one of the fuounders of F Fairch
Semiconductor Semiconductor and has bee
director of the research and director of
developm
de59.
machine instead of being concentrated in a central unit. In addition, the improved reliability made possible by integrated circuits will allow the construction of larger processing units.
Machines similar to those in existence today will be built at Machines similar to those in existence today will be built at Present and future
By integrated electronics, I mean all the various technologies which are referred to as microelectronics today as ell as any additional ones that result in electronics funcions supplied to the user as irreducible units. These technologies were first investigated in the late 1950 's. The ob-
ject was to miniaturize electronics equipment to include inject was to miniaturize electronics equipment to include in-
creasingly complex electronic functions in limited space with minimum weight. Several approaches evolved, including microassembly techniques for individual components, thinstructures and semiconductor integrated circuit Each approach evolved rapidly and converged so that
ach borrowed techniques from another. Many researchers believe the way of tiques from another. Many researchers ous approaches.
The advocates of semiconductor integrated circuitry are already using the improved characteristics of thin-film resistors by applying such films directly to an active semiconductor substrate. Those advocating a technology based upon
film are developing solvhiticated techno films are developing sophisticated techniques for the attach-
ment of active semiconductor devices to the passive film ar-
${ }_{\text {rays. }}^{\text {Both approaches have worked well and are being used }}$ in equipment today.

- Co-founder of Fairchild Semiconductor
- Co-founder of Intel Corp
- 1965 paper in Electronics Magazine

Gordon Moore's "Law" of Technology Scaling

Trend \#2: Moore's "Law"

One way to address the power challenge

1980
single simple processor

1990

2000 single complex processor

2010
multiple simple processors

Transition to Multicore

Trend \#1: Bell's "Law"

Bell's "Law" predicts an Internet-of-Things, and IoT cloud and embedded devices are increasingly demanding more performance and better efficiency

Trend \#2: Moore's "Law"

Moore's "Law" predicts an exponential increasing number of transistors per chip, but power limitations have motivated a move to multicore processors

Unfortunately, multicore processors are not enough. What else can we do to use more transistors to meet the needs of loT devices?

Application Agenda

Algorithm

\square
PL
OS
ISA
μ Arch
RTL
Gates
Specialized Computer Systems
Circuits

Devices

Technology

General Purpose

Specialized

Example Application Domain: Image Recognition

Machine Learning: Training vs. Inference

ImageNet Large-Scale Visual Recognition Challenge

Software: Deep Neural Network

Hardware Specialization from Cloud to Embedded

Google TPU

- Training can take weeks
- Inference has strict speed requirements
- Google TPU is custom chip to accelerate training and inference

Movidius Myriad 2

- Vision processing requires significant computation
- Can easily drain the battery of embedded loT devices
- Myriad 2 is custom chip to accelerate machine learning

The Future of Computer Chips

The Celerity Open-Source 511-Core RISC-V Tiered Accelerator Fabric:

Fast Architectures \& Design Methodologies for Fast Chips
Scott Davidson, Shaolin Xie, Christopher Torng, Khalid Al-Hawaj Austin Rovinski, Tutu Ajayi, Luis Vega, Chun Zhao, Ritchie Zhao Steve Dai, Aporva Amarnath, Bandhav Veluri, Paul Gao, Anuj Rao Gai Liu, Rajesh K. Gupta, Zhiru Zhang, Ronald G. Dreslinski Christopher Batten, Michael B. Taylor.
IEEE Micro, 38(2):3041, Mar/Apr. 2018

Celerity System-on-Chip Overview

Target Workload: High-Performance Embedded Computing

- $5 \times 5 \mathrm{~mm}$ in TSMC 16 nm
- 385 million transistors
- 5 "large" processing cores
- 496 "small" processing cores
- 1 neural network accelerator for machine learning

Trend \#1: Bell's "Law"

Bell's "Law" predicts an Internet-of-Things, and IoT cloud and embedded devices are increasingly demanding more performance and better efficiency

Trend \#2: Moore's "Law"

Moore's "Law" predicts an exponential increasing number of transistors per chip, but power limitations have motivated a move to multicore processors

Specialized Computing Systems

Hardware specialization can use the wealth of transistors to meet the needs of loT

Shreesha Srinath, Christopher Torng, Berkin Ilbeyi, Moyang Wang Shunning Jiang, Khalid Al-Hawaj, Tuan Ta, Lin Cheng and many M.S./B.S. students

Equipment, Tools, and IP

Intel, NVIDIA, Synopsys, Cadence, Xilinx, ARM

