

Christopher Batten

Assistant Professor Computer Systems Laboratory School of Electrical and Computer Engineering Cornell University

Research Interests: energy-efficient parallel computer architecture; parallel programming methodologies; hardware specialization; interconnection networks; VLSI chip-design methodologies

2010 : PhD @ MIT 2000 : MPhil @ University of Cambridge 1999 : BS @ University of Virginia Rapid Exploration of Accelerator-Rich Architectures: Automation from Concept to Prototyping

Rapid Exploration of Accelerator-Rich Architectures: Automation from Concept to Prototyping

XLOOPS: Explicit Loop Specialization [MICRO'14]

<pre>#pragma xlc</pre>	ops	unordered	£
for ($i=0;$	i <n;< td=""><td>i++)</td><td></td></n;<>	i++)	
C[i] = A[i] *	B[i]	
loop:			
lw	r2,	0(rA)	
lw	r3,	0(rB)	
mul	r4,	r2, r3	
SW	r4,	0(rC)	
addiu.xi	rA,	4	
addiu.xi	rB,	4	
addiu.xi	rC,	4	
addiu	r1,	r1, 1	
xloop.uc	r1,	rN, loop	

- Unordered Atomic
- Ordered-Through-Registers
- Ordered-Through-Memory
- Fixed vs Dynamic Bound

XLOOPS RTL/VLSI Evaluation

In-Order + LPSU Verilog RTL + Synopsys EDA Toolflow TSMC 40nm

PolyHS: Polymorphic Hardware Specialization

- Software engineers also want to create specialized yet flexible pieces of software to improve code efficiency and reduce design complexity.
- Software engineers develop carefully crafted libraries of algorithms and data structures that are composible and polymorphic over the types of values and/or functors.

Joint work with Prof. Zhiru Zhang @ Cornell University

PyMTL Pydgin

PyMTL: A Unified Framework for Vertically Integrated Computer Architecture Research Pydgin: Generating Fast Instruction Set Simulators from Simple Architecture Descriptions with Meta-Tracing JIT Compilers

[MICRO 2014] https://github.com/cornell-brg/pymtl

[ISPASS 2015] https://github.com/cornell-brg/pydgin

- 1. What accelerators have you designed or plan to design?
 - XLOOPS: Explicit loop specialization
 - PolyHS: Polymorphic hardware specialization
- 2. What is the process to select kernels for acceleration?
 - > XLOOPS: Focus on challenging mix of regular and irregular loops
 - PolyHS: Focus on common template libraries of algos and data structures
- 3. How do you estimate the acceleration potential?
- 4. What is your methodology for accelerator design?
- 5. How do you validate your accelerator design?
 - ▷ Multi-level modeling using PyMTL/Pydgin: FL, CL, RTL
 - Not clear application-specific accelerator estimation methodologies can apply in general to programmable and composible accelerators?
 - Currently only focusing on decoupled in-core accelerators
 - Powerful unified framework for test-driven design