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Rapid Exploration of Accelerator-Rich Architectures: Automation from Concept to Prototyping
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XLOOPS: Explicit Loop Specialization [MICRO’14]

#pragma xloops unordered

for ( i=0; i<N; i++ )  

  C[i] = A[i] * B[i]

loop:

  lw       r2, 0(rA)

  lw       r3, 0(rB)

  mul      r4, r2, r3

  sw       r4, 0(rC)

  addiu.xi rA, 4

  addiu.xi rB, 4

  addiu.xi rC, 4

  addiu    r1, r1, 1

  xloop.uc r1, rN, loop 
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XLOOPS
Cycle-Level Evaluation
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PolyHS: Polymorphic Hardware Specialization

I Software engineers also want to create specialized yet flexible pieces
of software to improve code efficiency and reduce design complexity.

I Software engineers develop carefully crafted libraries of algorithms
and data structures that are composible and polymorphic over the
types of values and/or functors.

template < typename Itr0, typename Itr1, typename Itr2, typename Cmp >

void ordered_merge( Itr0 out, Itr1 in_0, Itr1 end_0,

Itr2 in_1, Itr2 end_1, Cmp cmp ) {

while ( (in_0 != end_0) & (in_1 != end_1) ) {

*out++ = ( cmp( *in_0, *in_1 ) ) ? *in_0 : *in_1;

++in_0; ++in_1;

}

}
How can we systematically (and automatically?) generate hardware

specialization at design time that supports compile-time polymorphism?

Joint work with Prof. Zhiru Zhang @ Cornell University
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PyMTL
PyMTL: A Unified Framework for
Vertically Integrated Computer

Architecture Research

[ MICRO 2014 ]
https://github.com/cornell-brg/pymtl

Pydgin
Pydgin: Generating Fast

Instruction Set Simulators from
Simple Architecture Descriptions
with Meta-Tracing JIT Compilers

[ ISPASS 2015 ]
https://github.com/cornell-brg/pydgin
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I 1. What accelerators have you designed or plan to design?

. XLOOPS: Explicit loop specialization

. PolyHS: Polymorphic hardware specialization

I 2. What is the process to select kernels for acceleration?

. XLOOPS: Focus on challenging mix of regular and irregular loops

. PolyHS: Focus on common template libraries of algos and data structures

I 3. How do you estimate the acceleration potential?
I 4. What is your methodology for accelerator design?
I 5. How do you validate your accelerator design?

. Multi-level modeling using PyMTL/Pydgin: FL, CL, RTL

. Not clear application-specific accelerator estimation methodologies can
apply in general to programmable and composible accelerators?

. Currently only focusing on decoupled in-core accelerators

. Powerful unified framework for test-driven design
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