
Christopher Batten

Assistant Professor
Computer Systems Laboratory
School of Electrical and Computer Engineering
Cornell University

Research Interests: energy-efficient parallel
computer architecture; parallel programming
methodologies; hardware specialization;
interconnection networks; VLSI chip-design
methodologies

2010 : PhD @ MIT
2000 : MPhil @ University of Cambridge
1999 : BS @ University of Virginia

Rapid Exploration of Accelerator-Rich Architectures: Automation from Concept to Prototyping

Performance (Tasks per Second)

E
n

e
rg

y
 E

ff
ic

ie
n

c
y
 (

T
a

s
k
s
 p

e
r

J
o
u
le

)

General
Purpose

Processor

Design Power
Constraint

High-Performance
Architectures

Embedded
Architectures

Design
Performance
Constraint

Fle
xi
bi
lit
y
vs

. S
pe

ci
al
iz
at

io
n

Programmable
Accel

Composable
Accel

App Specific
 Accel

Cornell University Christopher Batten 2 / 7

Rapid Exploration of Accelerator-Rich Architectures: Automation from Concept to Prototyping

Performance (Tasks per Second)

E
n

e
rg

y
 E

ff
ic

ie
n

c
y
 (

T
a

s
k
s
 p

e
r

J
o
u
le

)

General
Purpose

Processor

Design Power
Constraint

High-Performance
Architectures

Embedded
Architectures

Design
Performance
Constraint

Fle
xi
bi
lit
y
vs

. S
pe

ci
al
iz
at

io
n

Programmable
Accel

Composable
Accel

App Specific
 Accel

XLOOPS

PolyHS

Cornell University Christopher Batten 2 / 7

Rapid Exploration of Accelerator-Rich Architectures: Automation from Concept to Prototyping

XLOOPS: Explicit Loop Specialization [MICRO’14]

#pragma xloops unordered

for (i=0; i<N; i++)

 C[i] = A[i] * B[i]

loop:

 lw r2, 0(rA)

 lw r3, 0(rB)

 mul r4, r2, r3

 sw r4, 0(rC)

 addiu.xi rA, 4

 addiu.xi rB, 4

 addiu.xi rC, 4

 addiu r1, r1, 1

 xloop.uc r1, rN, loop

Unordered Atomic
Ordered-Through-Registers
Ordered-Through-Memory
Fixed vs Dynamic Bound

GPR RF
32 × 32b

2r2w

GPP

LLFU

D$ Request/Response Crossbar

L1 I$ 16 KB

L2 Request and Response Crossbars

L1 D$ 16 KB

SLFU

Lane
3

Lane
1

Lane RF
24 × 32b

2r2w

Inst Buf
128×

Lane RF
24 × 32b

2r2w

Inst Buf
128×

Lane RF
24 × 32b

2r2w

Inst Buf
128×

Lane
0

SLFU SLFU SLFU

IDQ

Lane Management Unit

IDQ IDQ

CIB 8×CIB 8×CIB 8×

LSQ
16×

LSQ
16×

LSQ
16×

DBN

Lane Management Unit

Adaptive
Execution

Cornell University Christopher Batten 3 / 7

Rapid Exploration of Accelerator-Rich Architectures: Automation from Concept to Prototyping

XLOOPS
Cycle-Level Evaluation

0.5 1.0 1.5 2.0 2.5 3.0

Normalized Performance

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 E

ff
ic

ie
n
c
y

OOO 2-way + LPSU vs. OOO 2-Way
gem5 + PyMTL + McPAT

XLOOPS
RTL/VLSI Evaluation

DCache
16KB SRAM for Cache Lines

DCache
Tags

ICache
Tags

ICache
16KB SRAM for Cache Lines

L0
Instr

Buffer

L0
Instr

Buffer

L0
Instr

Buffer

L0
Instr

Buffer

Loop Pattern
Specialization Unit

Scalar
Processor

32b IEEE
Floating Point Unit

32b Integer
Mul/Div Unit

In-Order + LPSU
Verilog RTL + Synopsys EDA Toolflow

TSMC 40nm

Cornell University Christopher Batten 4 / 7

Rapid Exploration of Accelerator-Rich Architectures: Automation from Concept to Prototyping

PolyHS: Polymorphic Hardware Specialization

I Software engineers also want to create specialized yet flexible pieces
of software to improve code efficiency and reduce design complexity.

I Software engineers develop carefully crafted libraries of algorithms
and data structures that are composible and polymorphic over the
types of values and/or functors.

template < typename Itr0, typename Itr1, typename Itr2, typename Cmp >

void ordered_merge(Itr0 out, Itr1 in_0, Itr1 end_0,

Itr2 in_1, Itr2 end_1, Cmp cmp) {

while ((in_0 != end_0) & (in_1 != end_1)) {

*out++ = (cmp(*in_0, *in_1)) ? *in_0 : *in_1;

++in_0; ++in_1;

}

}
How can we systematically (and automatically?) generate hardware

specialization at design time that supports compile-time polymorphism?

Joint work with Prof. Zhiru Zhang @ Cornell University
Cornell University Christopher Batten 5 / 7

Rapid Exploration of Accelerator-Rich Architectures: Automation from Concept to Prototyping

PyMTL
PyMTL: A Unified Framework for
Vertically Integrated Computer

Architecture Research

[MICRO 2014]
https://github.com/cornell-brg/pymtl

Pydgin
Pydgin: Generating Fast

Instruction Set Simulators from
Simple Architecture Descriptions
with Meta-Tracing JIT Compilers

[ISPASS 2015]
https://github.com/cornell-brg/pydgin

Cornell University Christopher Batten 6 / 7

Rapid Exploration of Accelerator-Rich Architectures: Automation from Concept to Prototyping

I 1. What accelerators have you designed or plan to design?

. XLOOPS: Explicit loop specialization

. PolyHS: Polymorphic hardware specialization

I 2. What is the process to select kernels for acceleration?

. XLOOPS: Focus on challenging mix of regular and irregular loops

. PolyHS: Focus on common template libraries of algos and data structures

I 3. How do you estimate the acceleration potential?
I 4. What is your methodology for accelerator design?
I 5. How do you validate your accelerator design?

. Multi-level modeling using PyMTL/Pydgin: FL, CL, RTL

. Not clear application-specific accelerator estimation methodologies can
apply in general to programmable and composible accelerators?

. Currently only focusing on decoupled in-core accelerators

. Powerful unified framework for test-driven design

Cornell University Christopher Batten 7 / 7

