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Vertically Integrated Research Methodology

Our research involves reconsidering all aspects of the computing stack
including applications, programming frameworks, compiler optimizations,
runtime systems, instruction set design, microarchitecture design, VLSI

implementation, and hardware design methodologies
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Projects Within the Batten Research Group
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Inter-Core
● Task-Based Parallel Programming Frameworks

○ Intel TBB, Cilk
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Inter-Core
● Task-Based Parallel Programming Frameworks

○ Intel TBB, Cilk

Intra-Core
● Packed-SIMD Vectorization

○ Intel AVX, Arm NEON
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Challenges of Combining Tasks and Vectors
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Challenges of Combining Tasks and Vectors

9

Challenge #1: Intra-Core Parallel Abstraction Gap

void app_kernel_tbb_avx(int N, float* src, float* dst) {
// Pack data into padded aligned chunks
//   src -> src_chunks[NUM_CHUNKS * SIMD_WIDTH]
//   dst -> dst_chunks[NUM_CHUNKS * SIMD_WIDTH]
...

// Use TBB across cores
parallel_for (range(0, NUM_CHUNKS, TASK_SIZE), [&] (range r) {
for (int i = r.begin(); i < r.end(); i++) {
// Use packed-SIMD within a core
#pragma simd vlen(SIMD_WIDTH)
for (int j = 0; j < SIMD_WIDTH; j++) {
if (src_chunks[i][j] > THRESHOLD)
aligned_dst[i] = DoLightCompute(aligned_src[i]);

else
aligned_dst[i] = DoHeavyCompute(aligned_src[i]);

...

...
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...

Challenge #2: Inefficient Execution of Irregular Tasks
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Native Performance Results
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Regular Irregular

Native Performance Results
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Loop-Task Accelerator (LTA) Vision
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Loop-Task Accelerator (LTA) Vision

20

● Motivation

● Challenge #1: LTA SW

● Challenge #2: LTA HW

● Evaluation

● Conclusion
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LTA SW: API and ISA Hint
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LTA SW: API and ISA Hint
void app_kernel_lta(int N, float* src, float* dst) {
LTA_PARALLEL_FOR(0, N, (dst, src), ({
if (src[i] > THRESHOLD)
dst[i] = DoComputeLight(src[i]);

else
dst[i] = DoComputeHeavy(src[i]);

}));
}

void loop_task_func(void* a, int start, int end, int step=1);

23

Hint that hardware can potentially accelerate task execution
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LTA SW: Task-Based Runtime
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LTA SW: Task-Based Runtime

29
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Loop-Task Accelerator (LTA) Vision
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Loop-Task Accelerator (LTA) Vision

30

● Motivation

● Challenge #1: LTA SW

● Challenge #2: LTA HW

● Evaluation

● Conclusion
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LTA HW: Fully Coupled LTA
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LTA HW: Fully-Coupled LTA

35

Coupling better for regular workloads (amortize frontend/memory)
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LTA HW: Fully Decoupled LTA
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LTA HW: Fully Decoupled LTA

41
Decoupling better for irregular workloads (hide latencies)
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LTA HW: Task-Coupling Taxonomy
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LTA HW: Task-Coupling Taxonomy

46

+ Higher Perf on Irregular
- Higher Area/Energy

Task Group (lock-step execution)

More decoupling (more task groups) in either space or time improves 
performance on irregular workloads at the cost of area/energy
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LTA HW: Task-Coupling Taxonomy
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LTA HW: Task-Coupling Taxonomy

47

Does it matter whether we decouple in space or in time?
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LTA HW: Microarchitectural Template
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Loop-Task Accelerator (LTA) Vision
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Loop-Task Accelerator (LTA) Vision

48

● Motivation

● Challenge #1: LTA SW

● Challenge #2: LTA HW

● Evaluation

● Conclusion
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Evaluation: Methodology

Cornell University Ji Kim 49/21Cornell University Ji Kim 49/21Cornell University Ji Yun Kim

Evaluation: Methodology

• Ported 16 application kernels from PBBS and in-house 

benchmark suites with diverse loop-task parallelism

• Scientific computing: N-body simulation, MRI-Q, SGEMM

• Image processing: bilateral filter, RGB-to-CMYK, DCT

• Graph algorithms: breadth-first search, maximal matching

• Search/Sort algorithms: radix sort, substring matching

• gem5 + PyMTL co-simulation for cycle-level performance

• Component/event-based area/energy modeling

• Uses area/energy dictionary backed by VLSI results and McPAT

49
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Evaluation: Design-Space Exploration
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Evaluation: Design Space Exploration

52

spatial decoupling

temporal decoupling

resource constraints
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Evaluation: Design-Space Exploration
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Evaluation: Design Space Exploration

53

spatial decoupling

temporal decoupling

Prefer spatial decoupling over temporal decoupling

resource constraints
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Evaluation: Design-Space Exploration
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Evaluation: Design Space Exploration

55

spatial decoupling

temporal decoupling

resource constraints
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Evaluation: Design-Space Exploration
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Evaluation: Design Space Exploration

56

spatial decoupling

temporal decoupling

Reduce spatial decoupling to improve energy efficiency

resource constraints
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Evaluation: Energy Breakdown
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Conservative comparison since IO/O3 running serial baseline,
while LTA is using parallel runtime even on a single core
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Evaluation: Energy Efficiency vs. Performance
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Evaluation: Multicore LTA Performance
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Evaluation: Multicore LTA Performance
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Evaluation: Multicore Energy and Area

I Both the baseline CMP and the
CMP+LTA designs use the same
application code and almost the
exact same parallel runtime

I CMP+LTA vs. CMP-IO:
improves energy efficiency by
1.1⇥ geo mean

I CMP+LTA vs. CMP-O3:
improves energy efficiency by
3.2⇥ geo mean
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Related Work

I Challenge #1: Intra-Core Parallel Abstraction Gap
. Persistent threads for GPGPUs (S. Tzeng et al.)
. OpenCL, OpenMP, C++ AMP
. Cilk for packed-SIMD (B. Ren et al.)
. and more ...

I Challenge #2: Inefficient Execution of Irregular Tasks
. Variable warp sizing (T. Rogers et al.)
. Temporal SIMT (S. Keckler et al.)
. Vector-lane threading (S. Rivoire et al.)
. and more ...

I See MICRO’17 paper for detailed references ...
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LTA Take-Away Points

I Intra-core parallel abstraction gap
and inefficient execution of
irregular tasks are fundamental
challenges for CMPs

I LTAs address both challenges
with a lightweight ISA hint and a
flexible microarchitectural
template

LT
AGPP GPP

Task-Based Parallel
Programming Framework

LTA ISA Hint

Loop-TaskLoop-Task

SIMD SIMD LT
A

LTA HW

LTA SW

I Results suggest in a resource-constrained environment, architects
should favor spatial decoupling over temporal decoupling
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Upcoming Computer Laboratory Seminar

“A New Era of Open-Source SoC Design”
Wednesday, May 16th @ 4:15pm

Celerity: An Accelerator-Centric
System-on-Chip

CARRV’17, October 14, 2017, Boston, MA, USA T. Ajayi et al.
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Figure 1: Celerity SoC Architecture

stack to support new software research ideas. Complete o�-the-
shelf RISC-V processor and memory system implementations (e.g.,
Rocket chip SoC generator) enable rapidly deploying traditional
processors before modifying and/or extending these initial imple-
mentations with new hardware research ideas. Similarly, OCN IP
that is designed within the RISC-V ecosystem (e.g., NASTI, TileLink)
can reduce system-level integration e�ort. Standard veri�cation test
suites can greatly simplify developing new processor microarchi-
tectures, and turn-key FPGA gateware (e.g., framework for running
Rocket cores on various Xilinx Zynq FPGA boards) can help re-
duce engineering e�ort. The entire RISC-V ecosystem has a strong
emphasis on open-source software and hardware which facilities
modifying and/or extending just the component of interest in the
context of a given research idea.

In this paper, we describe our experiences using the RISC-V
ecosystem to build Celerity, an accelerator-centric system-on-chip
(SoC) which uses a tiered accelerator fabric to improve energy e�-
ciency in the context of high-performance embedded systems [1].
The general-purpose tier includes a few fully featured RISC-V proces-
sors capable of running general-purpose software including an oper-
ating system, networking stack, and non-critical control/con�guration
software. This tier is optimized for high �exibility, but of course at
the cost of energy e�ciency. The massively parallel tier includes
hundreds of lightweight RISC-V processors, a distributed, non-
cache-coherent memory system, and a mesh-based interconnect.
This tier is optimized for e�ciently executing applications with
�ne-grain data- and/or thread-level parallelism. The specialization
tier includes application-speci�c accelerators (possibly generated
using high-level synthesis). This tier is optimized for extreme en-
ergy e�ciency, but of course at the cost of �exibility. We envision
a three-step process for mapping algorithms to such fabrics. Step 1:
Implement the algorithm using the general-purpose tier. Step 2:
Accelerate the algorithm using either the massively parallel tier OR
the specialization tier. Step 3: Improve performance and e�ciency
by cooperatively using both the specialization AND the massively
parallel tier. A key feature of tiered accelerator fabrics is the use of
high-throughput parallel links to inter-connect all three tiers.

The Celerity SoC is a 5� 5 mm 385M-transistor chip in TSMC
16 nm designed and implemented by a team of over 20 students and
faculty from the University of Michigan, Cornell University, and

the Bespoke Silicon Group at the University of Washington and
the University of California, San Diego, as part of the DARPA Cir-
cuit Realization At Faster Timescales (CRAFT) program. Figure 1
illustrates the SoC architecture. The Celerity SoC includes �ve
Chisel-generated Rocket RV64G cores in the general-purpose tier, a
496-core RV32IM tiled manycore processor in the massively parallel
tier, and a complex HLS-generated BNN (binarized neural network)
accelerator implemented as a Rocket custom co-processor (RoCC)
in the specialization tier. Celerity also includes tightly integrated
Rocket-to-manycore communication channels, manycore-to-BNN
high-speed links, sleep-mode subsystem with ten RV32IM cores,
fully synthesizable phase-locked-loop clocking subsystem, and dig-
ital low-dropout voltage regulator. The chip was taped out in May
2017, and it will return from the foundry in the fall. The Celerity
SoC is an open-source project, and links to all of the source �les
are available online at http://opencelerity.org.

In the rest of the paper, we describe each of the three tiers in
more detail by answering four key questions: What did we build in
that tier? How did we build it? How did we leverage the RISC-V
ecosystem to facilitate design, implementation, and veri�cation in
that tier? and What were the challenges in leveraging the RISC-V
ecosystem in that tier? Overall, the RISC-V ecosystem played an
important role in enabling a team of junior graduate students to
design and tapeout the highest-performance RISC-V SoC to date in
just nine months.

2 GENERAL-PURPOSE TIER
WITH RV64G CORES

The general-purpose tier uses fully featured RISC-V processors to
execute general-purpose software. This tier is optimized for high
�exibility, at the potential expense of energy e�ciency.

What Did We Build? – The Celerity SoC general-purpose tier
includes �ve RV64G cores. The RV64G instruction set is comprised
of approximately 150 instructions for 64-bit integer arithmetic, sin-
gle and double-precision �oating-point arithmetic, memory access,
unconditional and conditional control �ow, and atomic memory
operations. The cores use a relatively simple �ve-stage, single-issue,
in-order pipeline. The RV64G core includes a memory management
unit and support for RISC-V machine, supervisor, and user privi-
lege levels. It can be used in either a bare-metal mode, with a proxy
kernel (i.e., system calls are proxied to a separate host machine),
or with a RISC-V port of the Linux operating system. The RV64G
cores serve as the interface between the other tiers and the o�-chip
“northbridge” which is implemented as gateware in an FPGA. The
northbridge includes support for initial boot-up, o�-chip DRAM,
and other I/O. Each RV64G core includes a 16 KB four-way set-
associative instruction cache and a 16 KB four-way set-associative
data cache. There is no on-chip L2 cache. The �ve RV64G cores are
not cache-coherent, and thus only support running �ve indepen-
dent instances of non-SMP Linux. Limited communication between
the RV64G cores is possible using software-managed coherence
and special support in the northbridge.

How Did We Build It? – We used the Berkeley Rocket chip SoC
generator to create the RV64G core [2]. The Rocket chip SoC gen-
erator is written in Chisel [4], a hardware construction language
embedded in Scala. Generating an RV64G core simply required

PyMTL: A Python-Based
Hardware Modeling Framework
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Ji Kim, Shreesha Srinath, Christopher Torng, Berkin Ilbeyi, Moyang Wang
Shunning Jiang, Khalid Al-Hawaj, Tuan Ta, Lin Cheng

and many M.S./B.S. students

Equipment, Tools, and IP
Intel, NVIDIA, Synopsys, Cadence, Xilinx, ARM
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Batten Research Group

Exploring cross-layer hardware specialization
using a vertically integrated research methodology
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