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Abstract 
 Isotach networks are a unique class of networks currently being developed at the University of Virginia 
under the guidance of Professor Paul Reynolds and Dr. Craig Williams of the computer science department.  
These networks make powerful guarantees concerning the timing of messages sent between distinct 
processors, and have the potential to significantly impact distributed processing.  The isotach research group 
has already constructed a software prototype, which is being used for performance analysis and as a 
platform for further development.  In order to reduce the overhead involved in using an isotach network, the 
major isotach components have also been implemented in hardware under the guidance of Professor Ronald 
Williams.  The preliminary prototypes included only limited fault tolerance capabilities, and specifically 
lacked the ability to handle failed isotach devices.  Therefore, my undergraduate thesis project was to design 
and implement three modifications necessary for the token manager, an isotach device, to detect and handle 
failed neighbors. 
 Isotach networks are based on a system of logical time.  Logical time is a method for decentralizing a 
global clock, and it allows processes in an isotach network to predict when a message will logically reach a 
destination.  The isotach prototypes implement logical time through two isotach specific components: token 
managers (TMs) and switch interface units (SIUs).  Each token manager is located at a network switch and 
is responsible for advancing logical time.  Each SIU is located in between the network and a host and is 
responsible for buffering messages and delivering them to the host at the appropriate logical time. 

In the original prototypes, a TM or SIU failure caused a fatal halt in logical time.  I addressed this 
failure mode through three TM hardware modifications.  The first modification involved adding the 
necessary timeout logic for a TM to detect when a neighbor has permanently failed and to allow the TM to 
sever the failed neighbor from the isotach network.  The second modification enables the TM to send a one-
bit error signal to all hosts.  Special consideration was paid to the timely delivery and reset of this error 
signal.  This signal bit notification is insufficient for a host to determine exactly which TM has failed, and 
thus the third modification allows a host to send a special message to a TM asking the TM if it is still 
operational.  By sending these messages to all of the TMs, a host can determine which specific TM has 
failed.  All three modifications were successfully implemented and functionally simulated. 
 The logical dead space problem is an important anomaly found in systems that attempt to handle failed 
TMs by logically severing them from the network.  The problem arises because tokens and isotach messages 
propagate through the network differently, and consequently isotach messages can freely pass through 
logically dead areas of the network while tokens cannot.  The logical dead space problem can allow isotach 
messages to violate the fundamental isotach synchronization guarantees.  This problem was one of the 
primary reasons the isotach architects did not address failed network components in the original prototypes.  
All three of the modifications can work together to adequately address the logical dead space problem by 
giving hosts the information necessary to determine which isotach messages are valid and which have 
passed through dead space. 
 The project has directly impacted the isotach research group by contributing to the group’s year long 
focus on fault tolerance.  More specifically, I have outlined a specific implementation for detecting and 
handling failed neighbors, and I have also clarified and addressed the logical dead space problem.  Even if 
the design is not actually used, the project has still impacted the group by encouraging discussion on fault 
tolerance issues.  Fault tolerance is a major concern when examining isotach networks for use in critical 
applications.  My undergraduate thesis project has contributed to the fundamental goal of creating robust 
and useful isotach networks. 
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Glossary 
asynchronous Tasks are executed independently, and thus the temporal relationship 

between tasks is not predictable.  Asynchronous systems lack shared 
signals such as clocks and semaphores. 

atomicity Property where tasks appear to be executed as an indivisible unit and 
are not interrupted by other tasks. 

barrier Isotach synchronization mechanism that allows one host to wait until 
a specific number of hosts reach the same barrier in their execution. 

centralized locks Method for concurrency control in a distributed environment. A 
single machine, known as the centralized lock manager, is 
responsible for causal guarantees and therefore hosts must talk to the 
centralized lock manager before sending a message. 

comparator Logic component that takes two bit strings as input and outputs a 
one if they are identical and otherwise outputs a zero. 

counter Logic component that outputs a binary number that is incremented 
by one on every rising edge of the clock input. 

dead space Area of the network where isotach logical time is no longer valid 
and thus assumptions concerning isochronicity and sequential 
consistency can no longer be made. The inverse of the LVR. 

deadlock Situation where multiple processing units cannot continue since each 
is waiting for the other to do something. 

distributed system Collection of independent (usually heterogeneous) machines that 
work together for some common goal. 

epoch Higher order unit of isotach logical time that must be greater than 
the diameter of the network.  At each epoch boundary, TMs clear 
their signal registers and SIUs deliver all signals to their respective 
hosts. 

failure state machine 
(FSM) 

TM state machine that controls the failure counter, valid bits, and 
issuing the error notification.  Part of the first and second 
modifications.  

failure threshold Multiple of the scale that is related to detecting failed neighbors.  It 
is one more than the number of reminder waves to send before 
declaring a neighbor dead. 

fault tolerance Ability of a system to continue operating (possibly in a reduced 
capacity) after a software or hardware failure. 

field programmable gate 
array (FPGA) 

Chip that allows logic to be programmed into it after fabrication.  
Usually made up of an array of logic modules.  Both the logic 
modules themselves and the interconnect between modules are 
programmable. 
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first in first out (FIFO) Buffer where items are taken out in the same order they arrived. 

flit Eight bit Myrinet routing entity that tells a switch how the attached 
message should be routed through the switch.  Each switch strips 
away one routing flit. 

galileo Software tool that synthesizes hardware logic gates from VHDL for 
a specific family of FPGAs. 

host Machine in a distributed system responsible for performing 
application level tasks.  The fundamental processing entity. 

input valid state machine 
(IVSM) 

TM state machine that monitors incoming words from the input 
FIFO and determines if they are a valid part of a token or a host-to-
TM ping. 

isochronicity Property where a task appears to be executed on multiple machines 
at the same time. 

isotach message One of two forms of isotach communication.  Carries application 
level data with a timestamp indicating when the message should be 
delivered to the target host. 

isotach networks Unique type of distributed system that can make low cost and highly 
scalable synchronization guarantees including isochronicity and 
sequential consistency. 

Linux Open source operating system for x86 Intel platforms. 

lock Mechanism for concurrency control.  When a process needs to 
perform a mutually exclusive task it sets the lock and then when it is 
finished it releases the lock. 

logic modules Basic programmable unit of an FGPA that can implement several 
hardware gates.  Synthesis tools translate VHDL into logic modules. 

logical time Method for ordering events in a distributed system that depends on 
relative time instead of physical time. 

logically valid region 
(LVR) 

Area of the network where synchronization guarantees are valid. 

mapsh Tool used to map hardware logic on the gate level into 
programmable function units for the ORCA FPGAs. 

master state machine 
(MSM) 

TM state machine that manages most of the higher level TM 
functions including sending token waves and reminder waves. 

Mentor Graphics Collection of tools that allow a developer to write, compile, and 
organize VHDL. 

multiplexor Logic component that allows a signal to choose which of several 
inputs should be directed to the output. 
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Myrinet Commercial high speed network developed by Myricom, Inc. which 
can handle speeds up to 160 MHz. 

network partitioning Network state where the network is divided into several parts.  The 
network can be physically partitioned if a network link fails or may 
be logically partitioned if a TM fails. 

parallel computer Computer with multiple (usually homogenous) processors that allow 
multiple tasks to execute concurrently.  These processors are usually 
in close physical proximity to each other. 

parsh Tool used to place PFUs into the ORCA FPGA framework and to 
route the wires that connect the PFUs. 

ping Form of network communication that verifies a network 
component’s status.  A ping is sent to the target and then is returned 
to the sender. 

ping handler state 
machine (PHSM) 

TM state machine that is responsible for moving the return route 
information from the return route buffers to the output FIFO bus. 

ping verifier Combinational logic that sets ping_valid to one if the first two bytes 
of an incoming word match the isotach message type identifier 
(x0600) 

port state machine (PSM) TM state machine that monitors one of the ports on the adjacent 
switch.  It stores whether or not that port has received an appropriate 
token. 

printed circuit board 
(PCB) 

Board that holds hardware components and provides a medium for 
connecting those components. 

programmable function 
unit (PFU) 

Basic logic module for the ORCA family of FPGAs.  Each PFU 
includes four flip-flops and four 16-bit lookup tables. 

programmable read only 
memory (PROM) 

Memory chip that can be programmed by a computer.  A user 
provides an address as input and then the chip will produce the 
programmed data value at that memory location. 

reminder waves Special token wave that duplicates previously issued token waves in 
an effort to elicit a response from a neighbor after a token has been 
lost. 

return route buffers A 16 bit buffer and a 35 bit buffer that store the return route 
information until it can be placed on the output FIFO bus. 

scalability Property of how a network handles adding more components to the 
network. 

scale TM configuration parameter that indicates how long to wait before 
sending a reminder wave.  The units are a multiple of the clock 
speed of the TM. 
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sequential consistency Property where tasks on multiple hosts appear to be executed in a 
specific order.  

signal Isotach communication mechanism that allows a host to notify all 
other hosts of some predefined event.  A signal is delivered to all 
hosts at the same logical time. 

switch Network component that is responsible for connecting multiple hosts 
and other switches together. 

switch interface unit (SIU) Isotach devices that reside in between hosts and the rest of the 
network.  These devices buffer isotach messages and then deliver 
these messages to the host at the appropriate logical time. 

synchronous Tasks are executed at the same rate in lock step.  Temporal 
relationships in synchronous systems are predictable. 

synthesis Process by which hardware logic gates are created from a VHDL 
structural or behavioral description.  Galileo is an example of a 
synthesis tool. 

token Lightweight communication mechanism that marks the boundary 
between logical time pulses.  Tokens are issued in waves and are 
propagated through the network by TMs. 

token manager (TM) Isotach devices that are located at each switch in the network.  These 
devices are responsible for monitoring the flow of tokens through 
the network. 

token wave Collection of tokens issued from a TM to all of that TM’s neighbors. 

valid buffer Register on the main FPGA that is responsible for storing whether or 
not corresponding devices on the adjacent switch are isotach 
devices. 

VHSIC hardware 
description language 
(VHDL) 

Programming language that includes several constructs suitable for 
modeling hardware.  Developed for the federal government’s Very 
High Speed Integrated Circuits program. 
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Chapter 
One 

 

 Introduction 
This report describes the design, implementation, and testing of three 
modifications made to the current isotach hardware prototype.  Isotach networks 
are a novel class of networks being developed at the University of Virginia that 
provide low-cost message ordering guarantees [13].  The current isotach hardware 
prototype, however, lacks the ability to handle permanently failed network 
components [7, 15].  The three modifications allow the hardware to detect and 
resolve this failure mode as well as notify all hosts in the system of the failure. 
These modifications can work together to address the logical dead space problem, 
an anomaly that occurs in systems that attempt to logically sever isotach devices.  
This chapter provides the general background on distributed systems, logical time, 
isotach networks, and the current prototypes necessary to understand the 
modifications and their impact on the system as a whole. 

1.1  DISTRIBUTED SYSTEMS 

 The need for performance, reliability, and capacity has made the isolated sequential computer 

almost obsolete.  The computing industry has turned to multiple machines or processes working 

together in order to satisfy growing scientific and commercial computing needs.  This type of 

parallelism can be found in redundant control systems, distributed databases, large multi-processor 

computers, and isotach networks.  The concurrent nature of these distributed systems is their 

greatest advantage as well as the source of significant complications.  For example, data duplicated 

on multiple machines must be kept consistent, and tasks may have to be executed at the same time or 

in a specific order on multiple independent machines.   

 As an analogy, consider a single carpenter who is charged with building a house.  The carpenter 

has complete control over the construction and can work in a very sequential manner, but the 

complexity and size of the house are limited.  A larger house can be built if multiple carpenters work 

together.  Carpenters can work on independent tasks at the same time or jointly work on complex 

tasks.  The carpenters, however, must be coordinated in some way to prevent duplication of work or 

wrongly ordered tasks.  A mechanism is needed to assure that the walls are not put up before the 

foundation and that the roof goes on at the correct time.  Notice that the complication in using 

multiple carpenters is the communication between and management of the various individuals.  
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Similarly, the complication in a distributed system is the communication between and management 

of the various machines.  In the construction analogy, these complications are handled with the use 

of a single foreman who has control over the project as a whole.  The problem with this traditional 

method is that if the foreman becomes ill the project usually goes into disarray.  Additionally, the 

manager-worker paradigm is not scalable.  In other words, as more and more carpenters join the 

project the foreman becomes a bottleneck reducing the overall efficiency.  Scalability is a measure 

of how well a system performs as more carpenters or machines are added.  The foreman concept is 

analogous to the traditional method in distributed systems of using a centralized lock manager [5].  

Each machine must talk to the lock manger before performing a task to prevent inappropriate 

ordering.  What is needed is a distributed mechanism for ordering and managing the various 

carpenters and machines. 

1.2  LOGICAL TIME 

 Isotach networks are a unique type of distributed system that provide a means to efficiently 

manage the complications arising from concurrency.  These networks provide a low cost and highly 

scalable mechanism to correctly order and manage communication between distributed machines 

[13].  In the construction analogy, a possible distributed solution would be to give each carpenter a 

synchronized watch and a list of activities to perform at very specific times.  If any specific 

carpenter wanted to tell another carpenter to perform a task, he would also include the exact time to 

begin the task.  In this way, multiple carpenters could perform the same task at the same time or 

perform different tasks in the correct sequential order.  Unfortunately, machines in a distributed 

system do not have any form of an absolute synchronized clock.  The key concept, however, is not 

that each machine be synchronized with physical time, but instead that each machine be 

synchronized relative to the other machines.  Isotach networks achieve this form of relative 

synchronicity through an implementation of logical time. 

 Logical time is a mechanism by which a host can specify a relative time when a message is to be 

delivered to another host.  In this way, a host can guarantee that multiple hosts receive a message at 

the same time or in a specific order.  Before examining the specific isotach implementation of 

logical time it is useful to further understand two key properties desired in a distributed system: 

isochronicity and sequential consistency.  Isochronicity means that tasks appear to be executed at 

the same time in a distributed system.  Isochronicity is similar to atomicity since tasks appear to be 

executed as an indivisible unit and are not interrupted by other tasks [13].  Using the carpenter 

analogy, an isochronous action might be several carpenters laying individual portions of a larger 
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concrete foundation.  All carpenters need to lay their portion at the same time so there are no seams, 

and thus it is undesirable for a carpenter to be interrupted for a coffee break while in the middle of 

his task.  Similarly, there are instances where it is desirable for several machines to update a 

duplicated variable at the same logical time without interruption so that the value of the variable 

remains globally consistent.   

 Sequential consistency implies that the overall order of operations is consistent with the order 

desired by each individual machine [13].  With a single carpenter or machine, sequential consistency 

is trivial.  Yet with multiple workers the situation becomes much more complex.  For example, 

assume the worker A tells worker B to lay the foundation and then a few minutes later tells worker 

C to put up the walls.  Worker A has specified an implicit order: he desires the foundation to be laid 

before the walls are put up for the house.  Now assume worker B runs out to get supplies, while 

worker C immediately proceeds to the site and begins putting up the walls.  Even though worker A 

issued the two tasks in a distinct order, the concurrent nature of distributed processing has allowed 

these two tasks to be executed such that they violate sequential consistency.   

 Logical time provides a mechanism to efficiently guarantee isochronicity and sequential 

consistency.  Isotach networks are a specific subset of logical time systems, where the logical time 

between two machines is related to the logical distance between two machines [16].  Logical 

distance may be based on the number of switches or some other deterministic metric.  This key 

feature of isotach networks is known as the isotach invariant, and it allows hosts to accurately 

specify when messages will be delivered to other hosts in the network.   
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1.3  ISOTACH NETWORKS 

 Isotach networks are implemented using two isotach-specific devices: token managers (TMs) 

and switch interface units (SIUs) [15].  TMs are located at each switch in the network, and are 

responsible for handling the flow of tokens through the network.  SIUs are positioned as buffers in 

between the hosts and the network.  A sample isotach network is show in Figure 1-1.  A token has a 

logical time stamp and is simply a marker that delineates the logical time pulses.  If a second is a 

pulse of real time, then a token is a pulse of logical time.  A TM sends out a token with timestamp i 

to each isotach device attached to the adjacent switch.  This is known as a token wave.  The TM 

waits until it has received a return token with timestamp i from each isotach device and then issues a 

new token wave with timestamp i+1.  SIUs also receive and issue tokens.  Thus, in the example 

network, TM A would issue a token wave to Host 1’s SIU, Host 2’s SIU, and to TM B.  Each of 

these three recipients would be responsible for issuing a new token back to TM A.  Once TM A 

receives a token from each of its three neighbors, it increments its local logical time clock and issues 

a new token wave.  In this way, tokens pulsate through the isotach network. 

 Although the tokens keep track of logical time, they do not carry any application data.*  Isotach 

messages allow hosts to transfer data in an isochronous or sequentially consistent manner.  When a 

host sends an isotach message, it attaches the desired logical time for delivery.  This message then 

 

Switch Switch

TM A TM B 

SIU 

SIU

Figure 1-1: Example Isotach Network: TM’s are attached to each switch in the 
network, while SIUs are located in between hosts and the rest of the network. 

Host 1 

Host 3 

Host 4 

SIU 

Host 2 

SIU 
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moves through the network normally to a target host’s SIU.  The target host’s SIU will buffer this 

message until it receives a token indicating the desired logical time for delivery has been reached.  

Thus, TMs monitor the flow of tokens while the SIUs are responsible for guaranteeing the proper 

delivery of isotach messages. 

 Notice the use of the term isotach device in the above description.  An important characteristic 

of an isotach network is that non-isotach traffic is allowed to freely move around the network.  This 

means that it is likely that non-isotach devices may be attached to a switch monitored by a TM.  It is 

important for a TM to differentiate between isotach and non-isotach devices, so that it does not wait 

to receive tokens from non-isotach devices. 

 Another significant advantage of the isotach design is its scalability [13].  Additional hosts can 

be added to the system with a minimal impact on the overall efficiency of the network.  This is 

because logical time is managed locally by the TMs and each host has its own SIU to buffer isotach 

messages.  In theory, the isotach design allows for low cost and highly scalable concurrency control.  

In the next section, the physical implementation of an isotach network will be discussed. 

1.3.1  Current Isotach Prototypes 

 Both the TM and the SIU have been implemented in software for preliminary testing and 

development.  This software implementation allows the system architects to quickly prototype 

changes to the isotach design, and also allows progress to be made on applications that exploit 

isotach functionality.  The software prototype is located in the isotach lab in Small Hall at the 

University of Virginia.  The system includes several off-the-shelf (OTS) personal computers running 

Linux and connected with a Myrinet network. [12] 

 Since the software prototype introduces significant overhead into the system, the isotach 

architects decided to also implement both the TM and the SIU in hardware.  This hardware 

prototype will better demonstrate isotach performance by minimizing the additional time required to 

handle tokens and buffer messages.  Two electrical engineering graduate students used a common 

design process to construct the hardware TM and SIU. [7]  

 First, the requirements for the hardware component were formalized through discussions with 

the isotach system architects.  Then, computer tools were used to create a VHDL hardware 

                                                                                                                                                                   

* Tokens do carry signal and barrier information but these are exceptions.  Most application data is carried by isotach 
messages. 
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description that satisfied the requirements.  The Mentor Graphics software tools allowed the 

graduate students to create graphical schematics of their designs and compile them into working 

simulations.  VHDL, or VHSIC Hardware Description Language, was developed for the United 

States government’s Very High Speed Integrated Circuits (VHSIC) program.  VHDL is similar to a 

traditional programming language except that it includes several specialized constructs that make it 

suitable for modeling hardware.  Once a digital system is described in VHDL, computer tools can 

translate this description into the physical connections necessary to actually construct a chip with 

the specified functionality.  The chips used in this process are fabricated in such a way as to allow 

them to be programmed in the field, and thus they are known as Field Programmable Gate Arrays 

(FPGAs).  These FPGAs with their VHDL described functionality form the ‘brain’, or the main 

computational unit, of the TM and SIU. [1, 7]   

 For this project the main FPGA was an ORCA FPGA (model OR2C40A) made by Lucent.  This 

chip has a maximum capacity of 900 logic modules.  Each logic module is known as a 

programmable functional unit (PFU) and can implement complex logic functions.  Unlike traditional 

FPGAs that can only be programmed once, this model can be reprogrammed many times. [9]  A 

computer tool known as Galileo was used to synthesize hardware logic from the code-like VHDL.  

Then, two tools specific to the ORCA family of FPGAs allowed the developers to first map the 

VHDL into logic modules (called mapsh) and then calculate the most appropriate placement and 

interconnect for those modules (called parsh). 

 After the hardware is described in VHDL it can be functionally simulated to verify that the 

component meets the desired requirements [7].  These simulations can prevent costly debugging 

later in the design process.  If the VHDL is satisfactory, then computer tools are used for synthesis.  

VHDL synthesis is the programming of the FPGAs with the appropriate interconnections.  The 

FPGAs are then placed on a printed circuit board (PCB) along with other simple hardware 

components and chips.  The PCB undergoes rigorous testing in several practical isotach network 

configurations.  As of the spring of 1999, both the TM and the SIU have been successfully 

implemented in hardware. 

 To make modifications, a researcher would need to perform the following steps.  First, the 

VHDL would be changed and then resimulated to verify correct functionality.  The modified VHDL 

would need to be re-synthesized.  The newly synthesized VHDL can be used in the current PCB as 

long as the modifications do not require more space than is available or need the external pins on the 

chip to be reassigned. 
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1.3.2  Isotach Fault Tolerance 

 Failures in distributed systems can take many forms including software crashes, faulty network 

links, and hardware device failures.  A fault tolerant system is one that can satisfactorily handle 

various failures [5].  Obviously no system can be perfectly fault tolerant, so much of the work on 

fault tolerance focuses on specific modes of failure.  For each mode, a fault tolerant system should 

be able to detect the failure, handle the failure, and then if possible recover from the failure. 

 

 

 

 

 

 

 

 

 

 

 

 The current isotach prototypes include some basic fault tolerance mechanisms.  Most notably, a 

lost token algorithm is implemented [15].  The algorithm starts a timer after a token wave is issued.  

If a token is not received from the neighbor before the timer expires, then the isotach device will 

reissue both the current and the previous token waves.  The reissued token waves are known as 

reminder waves.  This form of fault tolerance addresses temporary failures.  If the neighboring 

device has failed permanently, the system as a whole will not be able to advance logical time and 

will halt indefinitely.  As an example, consider the failure indicated in Figure 1-2.  In this instance 

TM B has experienced a permanent failure.  Under the current system, isotach logical time would be 

at a standstill.  Ideally, one would like to sever TM B and its attached hosts from the isotach 

network.  This would allow logical time to advance in the logically valid region (LVR).  TM A can 

manage tokens in the LVR and thus permit Host 1 and Host 2 to exchange isotach messages.   

Switch 
B 

TM A TM B 

SIU 

 SIU

Figure 1-2: Permanent Failure in an Isotach Network: Even though a TM has 
failed, the network can continue to operate within the logically valid region 

(LVR).  For logical time to continue, TM A needs to detect the failure, logically 
sever TM B from the network, and notify all hosts of the failure. 

Host 1 

Host 3 

Host 4 

SIU 

Host 2 

 SIU Switch 
A 

Logically Valid 
Region 

Link 1 

Link 2  
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 There are additional modes of failure that this approach can adequately address.  In Figure 1-2, 

a failure in Link 1, Link 2, or Switch B will appear to TM A to be exactly the same as a TM B 

failure.  Even so, these failure modes have subtle differences. A failure in Link 2 will be very similar 

to a TM B failure in all respects, except this type of failure is much more likely to prevent any 

isotach traffic from TM B (corrupt or valid) from reaching the LVR.  While a failed TM A logically 

partitions the network, a failure in Switch B or Link 1 physically partitions the network as well.  

This means that neither isotach traffic nor non-isotach traffic can pass through that region.  The 

approach described in this report also applies to failed SIUs, since to a TM a SIU failure appears the 

same as a neighboring TM failure.  Although this report focuses on the case where a TM is handling 

a neighboring TM failure, it is important to remember that the approach and modifications described 

within this report are easily extended to failed network links, switches, and SIUs. 

 A key consequence of handling failed TMs by logically severing them from the network is that 

dead space can occur in the network.  Dead space is an area of the network where logical time has 

broken down and the isotach synchronization guarantees are no longer valid.  Careful consideration 

must be made on how dead space can impact LVRs in the system.  The logical dead space problem 

was one of the primary reasons the isotach architects did not include failed neighbor handling in the 

original prototypes.  The next section outlines three hardware modifications that will enable TMs to 

detect and handle permanently failed neighbors as well as notify all the hosts in the system of the 

failure.  These modifications also work together to address the logical dead space problem. 

1.4  DESIGN MODIFICATIONS FOR FAILED NEIGHBOR HANDLING 

 I made three modifications to the TM hardware prototype.  My objective was to create a more 

fault tolerant TM and thus contribute to the isotach group’s year long focus on fault tolerance.  Each 

modification is briefly mentioned below and discussed in detail in the following chapters. 

 I. The first modification involved adding the necessary logic for a TM to detect when a 

neighbor has permanently failed and to allow the TM to sever the failed neighbor from 

the isotach network.  To detect failed neighbors, each TM has a counter that records 

how many reminder waves have been issued.  Once this count exceeds a preset 

threshold, the neighbor is declared dead.  To sever the failed neighbor from the 

network, the TM changes the status of the failed neighbor from an isotach device to a 

non-isotach device.  This means the TM no longer expects tokens from the failed 

neighbor and will not issue tokens to the failed neighbor.   
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 II. The second modification enables the TM to send out a one bit signal indicating that a 

failure has occurred.  Special consideration was paid to the timely delivery and reset of 

this error signal. 

III. This signal bit notification is insufficient for a host to determine exactly which TM has 

failed, and thus I modified the TM to allow a host to send a special message to a TM 

asking the TM if it is still alive.  This special message is known as a ping.  By pinging 

all TMs, a host can determine which specific TM has failed. 

 The example introduced in Figure 1-2 can illustrate how these three modifications allow logical 

time to advance within the LVR.  Assume that TM A has sent out token wave i and is waiting for 

TM B to send token i.  First, TM A will detect the permanent failure of TM B after sending a 

predetermined number of reminder waves and failing to receive a response.  TM A then declares 

TM B to be a non-isotach device and correspondingly increments its local logical clock to i+1.  TM 

A will now send out token wave i+1 to Host 1 and Host 2 but will not send a token to TM B.  These 

tokens will have an error bit set so that Host 1 and Host 2 are notified of the failure.  Host 1 and 

Host 2 send special messages to both TM A and TM B to determine which device in the system has 

failed.  Both hosts realize that TM B has permanently failed, and thus they avoid sending isotach 

messages to the logically inaccessible Host 3 and Host 4.  The three hardware modifications have 

allowed a portion of the isotach network to continue to function.  The recovery of these failed hosts, 

a key fault tolerance issue, will not be addressed in this document.  TM and SIU failures occur 

infrequently enough that once the failed component is fixed, the whole network can be reset.  Even 

though TM and SIU failures are rare, this failure mode is still a concern since these occasional 

failures halt the entire isotach network. 

 The next chapter provides a chronological survey of the literature relevant to this project and is 

useful for determining sources of additional information.  The following three chapters outline the 

design and implementation for each of my three modifications.  Chapter 6 discusses the original and 

modified TM schematics and also addresses the synthesis and simulation of the various 

modifications.  Chapter 7 is dedicated to describing and handling the logical dead space problem.  

Conclusions and recommendations for further work can be found in the final chapter. 
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Chapter 
Two 

 

 Literature Review 
This chapter complements the previous general background information by providing 
a survey of the literature relevant to the project.  Causality in distributed systems has 
long been a source for significant complications, yet isotach networks are able to 
address these concerns in a low cost and highly scalable manner.  It is beneficial to 
briefly review past approaches and to examine the theoretical basis from which 
isotach networks developed.  Fault tolerance is a major concern in both isolated and 
distributed systems, and it is particularly relevant to isotach networks in light of the 
research group’s year long focus on fault tolerance.  My undergraduate thesis 
focuses on isotach fault tolerance, thus this chapter will allow the reader to better 
understand the historical and theoretical basis for the project. 

2.1  ADDRESSING CAUSALITY IN DISTRIBUTED SYSTEMS 

 Regardless of the performance of a single serial processor, multiple processors working on the 

same task will theoretically be faster [3].  Distributed systems programmers have long desired to 

capitalize on this fundamental principle, yet many characteristics of distributed systems make 

achieving this goal difficult.  Single processor machines make the basic guarantee that instructions 

will be executed in sequential order.  Distributed systems, however, have no inherent linear 

execution of instructions.  Therefore, the notion of causality, that one event happens before another, 

has long been a primary focus of distributed system researchers.  Causality can aid in preventing 

deadlock, creating distributed atomic operations, and keeping consistent shared memory [11]. 

  Originally, designers could choose a completely synchronous system in order to simplify the 

question of causality.  In synchronous operation, the designer can make assumptions concerning 

process execution speeds and message delivery times.  This allows for a very controlled 

environment in which causality is a much simpler problem.  Although useful, strictly synchronous 

systems cannot solve many problems.  An asynchronous system avoids making timing assumptions 

and thus operations are arbitrarily interleaved with no ordering guarantees at all [16].  Early attempts 

to provide some basic synchronization to asynchronous systems used locks and events to try to 

control causal relationships.  Locks allow a single processor to gain mutually exclusive access to a 

block of code and data.  Events allow one processor to notify another processor that it can continue 
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a specific operation.  Locks and events limit the advantages gained through parallelism by reducing 

the amount of work that can be executed concurrently [5, 16].   

 The ground breaking work of Lamport attacked this problem from a unique direction.  

Lamport’s 1978 paper, “Time, Clocks, and the Ordering of Events in a Distributed System” formed 

the foundation for the concept of logical time, a method for achieving the “happened before” 

relation without global or physical clocks [8].  “Partially ordered logical clocks can provide a 

decentralized definition of time for distributed computing systems, which lack a common time base” 

and can be implemented in various ways [4].  Lamport suggests a scalar implementation, while later 

researchers examined vector and matrix implementations to store additional logical time information 

at the cost of increased overhead to maintain the more complex clocks.  Raynal and Singhal provide 

an overview on implementing logical time through these various means [11].  

 A wide array of research developed from Lamport’s work.  Awerbuch investigated using a 

synchronizer to simulate synchronicity on asynchronous networks [2].  Awerbuch’s alpha-

synchronizers require each node to notify its neighbors in a new pulse once it has determined that it 

is ‘safe’.  A node is ‘safe’ once it has received notification from all of its neighbors concerning the 

previous pulse.  Awerbuch’s alpha-synchronizers and Ranade’s later work examining controlled 

concurrent operations contributed to the development of isotach networks [13].   

 Reynolds and Williams introduced isotach networks in the 1990’s at the University of Virginia.  

This new class of networks achieves isochronicity and sequential consistency by logically relating 

the message travel time to the message travel distance [16].  This original concept was further 

developed in a paper published by Reynolds, Williams, and Wagner in 1997 [13].  This paper is the 

pioneering work on isotach networks and in addition to a general description, it proposes a possible 

implementation and discusses preliminary performance analysis.  The performance analysis 

demonstrated the increased efficiency of isotach networks over conventional concurrency control 

techniques.  The researchers recognized the controversy concerning the potential overhead involved 

in implementing isotach logical time.   They claim that “the guarantees [isotach networks] offer can 

be implemented cheaply, yet are sufficiently powerful to enforce fundamental synchronization 

properties” [13].  The search for a low overhead implementation is a driving factor in the recent 

desire to implement the isotach algorithm in hardware. 

 The original implementation proposed in 1997 required isotach specific switches that could 

buffer messages and send messages to the next switch at the appropriate logical times.  The initial 

prototype, however, was to be implemented using commercial hardware, and therefore this 
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implementation could not be realized.  Instead a new implementation was proposed in the internal 

working paper, “Design of the Isotach Prototype” [15].  This working paper outlines an 

implementation that uses token managers (TMs) and switch interface units (SIUs).  TMs handle the 

tokens that keep track of logical time, and are similar to Awerbuch’s pulses [2].  These tokens are 

passed from switch to switch and synchronize isotach logical time.  SIUs reside between the 

network and the host.  Messages are sent asynchronously from a host to the receiving host’s SIU.  

The message is then buffered in the SIU until the proper logical time, at which time the message is 

delivered to the host.  The hosts, therefore, do not see logical time, although there are mechanisms to 

partially or fully bring the hosts within logical time [15]. 

 The design specification has currently been implemented both in software and in hardware by a 

team of computer science and electrical engineering graduate students.  Both implementations have 

unique advantages.  The software implementation offers rapid prototyping and convenient flexibility 

while the hardware implementation should drastically improve the overall performance of the 

network.*  Regehr’s technical report provides the primary reference for the software implementation 

[12], while Kuebert’s master’s thesis is the main documentation for the hardware implementation of 

the TM [7].  Both of these implementations assume a fault free network, and although they address 

the issue of temporarily lost tokens, the implementations do not handle failed isotach devices.  The 

thesis project outlined in the following chapters allows a TM to handle failed isotach devices. 

2.2  FAULT TOLERANT DISTRIBUTED SYSTEMS  

 Fault tolerance and distribution share a symbiotic relationship.  David Powell notes that 

“dependability is an inherent concern of distribution” and thus “distribution can be a motivation for 

fault-tolerance.”  However, Powell also states that the need for redundancy to achieve fault tolerance 

implies that “fault-tolerance can be a motivation for distribution” [10].  Schneider goes further and 

states that “Protocols and system architectures that are not fault tolerant simply are not very useful 

...” [14].  Fault tolerance of distributed systems involves a wide variety of failure modes and there is 

significant debate over the best failure model.  Some traditional models include failstop, crash, and 

send omission [14].  

 There is a large body of research addressing the theory of fault tolerant distributed systems.  A 

review of the relevant concepts involved can be found in Hadzilacos and Toueg’s paper “Fault-

                                                      

* The hardware implementation is currently being functionally tested.  Performance analysis will begin in the near future. 
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Tolerance Broadcasts and Related Problems” [6].  Both authors have done significant work with 

distributed fault tolerance.  Their paper notes that in synchronous or approximately synchronous 

systems, such as isotach networks, one can use message timeouts to detect failures.  Such methods 

required bounded message transmissions and therefore make critical assumptions on the underlying 

hardware’s performance.  Great care must be taken when choosing timeout intervals. 

 The Delta-4 project offers an excellent practical example of distributed fault tolerance [10].  The 

project uses two part components to create failstop nodes.  The Network Attachment Controller 

(NAC), similar to isotach’s SIU, acts as a barrier between the actual node and the network.  If the 

NAC determines that its node has failed, it can cease the communication between the node and the 

network and then notify the other nodes.  This creates a failstop failure mode.  The project also 

considered using “artificial, minimum frequency [network] traffic that spans all nodes.”  Such 

artificial traffic would allow nodes to detect failures even if there is no normal network traffic.  This 

simulated traffic is implemented in isotach through lightweight tokens. 

 A recent grant extension from DARPA has allowed the isotach research group to further 

investigate fault tolerant isotach networks [18].  The statement of work outlines the basic strategy 

for this research and states the main failure modes to be considered: message loss or corruption, 

failures of hosts or network components, and receive-omission failures due to buffer overflows.  The 

fundamental assumption when addressing these concerns is a robust token exchange mechanism.  

Williams states that “Our approach in the proposed work is to make the token mechanism itself 

robust and to then use the token mechanism as a fast failure detector and as a mechanism for the fast 

and reliable delivery of critical signals” [18]. 

 The “Fault Tolerant Isotach Systems Working Paper” offers some preliminary approaches to 

achieving these goals [17].  This internal paper reviews the lost token algorithm, the consensus and 

commit problems, timeout fault detection, and using layered logical time.  The following chapters 

outline modifications that implement a portion of the concepts mentioned in this internal paper; 

more specifically, my thesis project provides a mechanism for TMs to addressed failed network 

devices.  The fault tolerant isotach working paper also provides some preliminary discussion of the 

logical dead space problem.  This technical report expands the theoretical basis for the logical dead 

space problem, and explains how the three modifications can address the problem. 
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Chapter 
Three 

 

 Detecting and Handling Failed Neighbors 
This chapter examines the design, implementation, and testing of the first of three 
hardware modifications.  This modification allows a TM to detect when a neighbor 
(either a TM or an SIU) has permanently failed.  Once a failure is identified, it is 
severed from the isotach network by changing its status from an isotach device to a 
non-isotach device.  The modification is divided into two parts: first the detection of 
a failure and second the handling of that failure.  Each part is discussed in a separate 
section below and includes any necessary additional background information, a 
discussion of the design decisions, and the actual design.  The chapter concludes 
with the simulation results. 

3.1  DETECTING FAILED NEIGHBORS 

 As mentioned in Chapter 1, fault tolerance involves the detection, handling, and recovery of 

failed components.  Detection can be a difficult problem in networks since a failed component may 

remain undetected for sometime.  If no other component initiates communication with the faulty 

component, there is no way to identify the failure.  One way to handle this situation is to constantly 

send small messages to all components, and if a component does not respond we can assume it has 

failed.  The token exchange mechanism is a convenient method for implementing this type of failure 

detection.  If each TM is monitoring its neighbors, then when a TM does not receive a return token it 

will have identified a failure.  The current prototype includes a simple timer for this purpose, except 

in its current form it only detects temporary failures. 

3.1.1  Additional Background: How Network Configuration Parameters are Stored 

 There are several parameters used by the TM that depend on the current network configuration.  

These parameters include routing information about neighboring devices and values that depend on 

the size of the network.  If these parameters were permanently stored on the main FPGA, a user 

would have to perform the cumbersome task of reprogramming the FPGA whenever these values 

needed to be updated.  A more robust method is to use a separate removable chip to store these 

commonly changed values.  As described in Brian Kuebert’s graduate thesis [7], the current 

hardware TM uses a removable programmable read only memory (PROM) to store these values.  A 
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PROM acts as an electronic look up table.  An FPGA sends the PROM an address and the PROM 

returns the corresponding piece of data.  To set the network configuration parameters, a user need 

only program a PROM and insert it into a special socket on the TM’s PCB.  Updating the network 

parameters is simply a matter of replacing the PROM. 

 For performance considerations, the PROM values need to 

be stored on the FPGA while the TM is operating, but in 

Kuebert’s design the PROM values are not loaded into the 

main FPGA.  Such a design would require a great deal of the 

main FPGA’s scarce capacity for storing these values [7].  To 

resolve the problem, Kuebert used a two FPGA solution as 

illustrated in Figure 3-1.  The PROM variables are loaded into 

a second smaller FPGA known as the routing FPGA.  Output 

pins from the routing FPGA have the various parameter values 

statically connected to pins on the main FPGA. 

3.1.2  Additional Background: Current Timer Hardware 

 The current hardware TM includes a timer that keeps track of the physical time elapsed since 

the last token wave was sent.  A timeout occurs if the timer expires without the TM having received 

a token from each of the isotach devices attached to the adjacent switch.  

 This timer is implemented using an eight bit counter, and an eight bit comparator.  The general 

architecture is shown in Figure 3-2.  The counter simply increments its value by one every rising 

edge of the clock.  To set the counter back to zero, a finite state machine sets the clear signal at the 

appropriate time [more on the timing state machine can be found in Appendix A].  The comparator 

output, labeled TO_raw for timeout received, will be zero unless the counter’s output equals a 

variable threshold.  This threshold is known as the scale and is one of the parameters discussed in 
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clkclk count
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TO raw 

Figure 3-2: Original Timer Hardware Architecture: A counter is incremented on every rising edge 
while a comparator sets the TO_raw signal to one when the counter reaches the preset scale value.  

The labels clear, scale, clk, and TO_raw correspond to signals in the TM design. 
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Figure 3-1: Parameter Storage: 
Current hardware uses a dual FPGA 
design to store PROM values yet 
save space on the main FPGA 
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Section 3.1.1.  When TO_raw is one, a timeout has occurred and the TM takes the necessary action 

to send out two reminder waves. 

3.1.3  Hardware to Detect Permanent Failures 

 To detect permanent failures, the TM will simply set a limit on the number of times it will try to 

illicit a response from a neighbor using reminder waves.  To determine when a failure has occurred, 

one need only count the number of times TO_raw becomes one.  To do this, I added another 8 bit 

counter and 8 bit comparator.  The modifications necessary to detect a failure and their integration 

into the original design are shown Figure 3-3.  This new counter is incremented every time TO_raw 

becomes one.  The output of the counter is compared to a permanent threshold value, known as the 

failure threshold.  Notice that the modification does not require any changes to the original 

hardware.   

 The permanent threshold represents how many pairs of reminder waves will be issued before the 

neighbor is declared dead.  Assume the failure threshold is t1, the scale is t2, and the counter clock 

width is T nanoseconds.  Then a TM will wait (t1 x t2 x T) nanoseconds before declaring a neighbor 

dead.  While waiting, the TM is sending reminder waves every (t1 x T) nanoseconds.*  As 

previously mentioned, the scale is a user set variable. It would be much more convenient from a user 

perspective to have the failure threshold also be a user set variable since this would allow a user to 

easily change this parameter.  As described in Section 3.1.2, user variables must have dedicated pins 

on the FPGA.  Making the failure threshold a user set variable would require changing the board 

design and thus would be very costly from the board designer perspective.  More importantly, there 

simply are not eight extra pins on the main FPGA that could be used for wiring a new user variable.  

                                                      

* This is a simplified calculation since the counter clock is actually slower than the system clock.  The system clock passes 
though a clock divider, which essentially slows the clock frequency by a factor of 29.  The slower clock decreases the 
timeout granularity but allows the user to use fewer bits when specifying the scale value. [6] 
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Figure 3-3: Timer Hardware with Modifications: The additional counter and comparator 
will set the failure_detected signal to one when failure_threshold timeouts have occurred. 
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If a user wants to change the failure threshold under the current implementation, the user must use 

the Mentor Tools to modify the actual VHDL source and then recompile and resynthesize the entire 

main FPGA. 

 Another alternative was investigated to make the failure threshold a user variable without 

modifying the board.  One could multiplex the data lines shown in Figure 3-1.  To do this we would 

need to store the failure threshold and two other eight bit user variables on the main FPGA (which 

could cause capacity problems).  Upon reset, the routing FPGA would get all three user variables 

from the PROM and temporarily store them.  The main FPGA would use two bits to indicate which 

of the three variables it was ready to receive and then the routing FPGA would send the appropriate 

variable across data lines to the main FPGA.  The main FPGA would then store this first variable, 

indicate which variable was next, and wait for the routing FPGA to send it across the same data 

lines.  In this way the main FPGA would get all three variables from the routing FPGA and store 

them locally.  Problems with this strategy included the added complexity and the need to modify the 

routing FPGA.  For these reasons it was chosen to proceed with a hardcoded failure threshold.  The 

idea, however, of storing a user variable on the main FPGA will become useful in the next section. 

3.2  HANDLING FAILED NEIGHBORS 

 The first section of this chapter discussed the modifications that detected when a failure had 

occurred.  The ultimate result is that when a neighbor has failed the failuredetected signal  becomes 

one.  This section will address how we can use the failuredetected signal to initiate the severing of 

the failed neighbor from the isotach network.  Before the actual modification can be discussed, some 

additional background will be presented. 
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3.2.1  Additional Background: How TMs Store Neighbor Information  

 A more detailed look at how the TM 

interacts with its neighbors is necessary 

before one can understand the modifications 

which handle the failed neighbor.  As 

discussed in Chapter One,  TMs are attached 

to all switches and are responsible for 

managing the flow of tokens through the 

network.  TMs are always attached to the 

highest port number of the adjacent switch.  

A port number is simply a method for 

identifying each of the ports on the adjacent 

switch.  Although the hardware TMs are 

designed to work with either eight port or 

sixteen port switches, the simple examples 

in this document use four port switches.  TM 

A in Figure 3-4 is located on port 3, the 

highest port of its adjacent switch.  There 

are three types of devices that may also be 

attached to the remaining ports of the switch: other switches, isotach SIUs, and non-isotach devices.  

In this example, an isotach SIU is attached to port 0, a non-isotach device is attached to port 1, and 

another switch is attached to port 2. 

 Each TM needs to know what type of device is attached to each port of the adjacent switch.  

Outgoing tokens are in a different format when sent to SIUs as opposed to another TM, and tokens 

should not be sent to nor expected from non-isotach devices.  Two fifteen bit registers within the 

TM keep track of this information: the valid bit register and the tm_siu register.  A one in the valid 

register indicates that a valid isotach device is attached to the corresponding port.  A one in the 

tm_siu register indicates that a switch/TM pair is attached to the corresponding port, while a zero in 

indicates that an SIU is attached to the corresponding port.  Table 3-1 shows the valid and tm_siu 

bits for the previous example. 

 

Port Number valid tm_siu 
0 1 0 
1 0 X 
2 1 1 

Switch 
A 

Switch 
B 

TM A TM B 

Figure 3-4: TM’s Handling of Isotach and Non-Isotach 
Devices: Each switch port is identified by its port 
number. A TM has a record of each port number on the 
adjacent switch and that port’s isotach status.  
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Table 3-1: TM A’s valid and tm_siu Bits: The valid bit 
equals one for ports that have isotach devices attached.  
The tm_siu bit is one for ports with a TM/switch attached 
and zero for ports with a SIU attached. 
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3.2.2  Buffering the Valid Bits 

 The TM can essentially sever a neighbor from the isotach network by changing the valid bit 

associated with the neighbor from a one to a zero.  Once this change is made, the TM will no longer 

expect tokens from or send tokens to the severed neighbor.  Notice that the neighbor is not 

physically severed from the network but is instead logically severed. 

 In the original implementation, the valid bits mentioned in the previous section would be set 

prior to operating the TM, stored in the routing FPGA, and statically linked to the main FPGA.  The 

problem is that one wants to modify the valid bits (to severe a failed neighbor) but the bits are not 

stored on the main FPGA.  There is no way in the original implementation to tell the routing FPGA 

to modify a stored user variable since the original design engineer had not anticipated this need.  To 

solve this problem, the valid bits are buffered on the main FPGA.  The bits are initialized to the 

PROM user value on reset, and then can be modified by the logic when a failure occurs.   

 The next issue is knowing which valid bit to change.  The failure detection discussed in Section 

3.2.1 results in a single bit signal.  It is not possible from this single signal to determine which port 

and the correspondingly which device is not responding.  A careful analysis of the original design 

[see Appendix A] reveals that the port state machines (PSMs) contain the necessary information with 

which the logic can determine which device failed.  The PSM state diagram is shown in Figure 3-5.  

There is one PSM for each port of the adjacent switch. 

 

 

 

 

 

 The port state machine works as follows.  When the PSM is waiting for a return token from the 

corresponding device it stays in state s1 and the send_auth signal is zero.  Once the token is 

received, the PSM moves into state s0 and send_auth becomes one.  When the send_auth for all 

fifteen PSMs is one, the TM knows it has successfully received a full token wave and can increment 

the local clock and send out a new wave.  Once the new wave has been sent, the PSM moves back 

into s1 to wait for the next token.  Thus the send_auth signals contain the information needed to 

s0 

send_auth  
= 1 

s1 

send_auth  
= 0 

If received a token on 
corresponding port

After a token wave is 
finished being sent

Reset 

Figure 3-5: Port State Machine: These finite state machines monitor each 
port of the adjacent switch and indicate when a token has been received. 
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determine which port is not responding.  If a failure is detected, then whichever PSM’s send_auth is 

zero corresponds to the failed neighbor.   

 Combinational logic is placed in front of the buffered valid bits that allow the TM to initialize 

the valid bits, and modify the correct bit according to the send_auth signals.  This logic requires a 

new state machine to issue reset and enable signals at the correct time.  This new state machine, 

called the failure state machine (FSM) will be discussed in the next section.  The required 

combinational logic for a single buffered valid bit is shown in the VHDL segment below. 

if ( reset = '1' ) then
newvalue <= initialval;

else
newvalue <= sendauth AND laststored;

end if;

This piece of logic has one output signal, newvalue, and four input signals: reset, initialval, 

sendauth, and laststored.  The output signal is directly wired to the load lines of the valid bit buffer.  

The reset signal is not the global reset, and instead comes from the FSM when the valid bits need to 

be initialized to the value from the PROM.  The intialvalue is attached to the external pins that are in 

turn wired to the routing FPGA.  This value is the initial user specified valid bit.  It makes sense to 

reinitialize the buffered valid bits upon reset since a user will probably reset the network once the 

failed component is fixed.  If the failed component is still down after the reset, the normal failure 

detection mechanism simply redetects the failure.  The sendauth signal is the same as the send_auth 

signal mentioned above and the laststored signal is simply the current output from the buffer. 

 The logic output will change from one to zero when sendauth is zero indicating the 

corresponding port has not received a token.  This value will not be loaded into the valid bit buffer 

until the FSM enables the buffer.  Notice that once a valid bit has changed to zero it cannot change 

back to one since the laststored stored signal will always be zero.  The only way to revalidate a port 

is to reset the entire machine.  

 A nice consequence of using the send_auth signal to determine which port is invalid is that the 

system can detect several failed neighbors in parallel.  If two neighbors fail at the same time, the 

failure will be detected and both valid bits will be set to zero. 
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3.2.3  Failure State Machine 

 

 

 

 

 The failure state machine (FSM) shown in Figure 3-6 provides the timing and control for the 

hardware discussed above: the counter and the valid bits buffer.  The FSM begins in state f0 where 

the validreset and clear_counter signals are one.  These signals set the counter discussed in Section 

3.1.3 to zero and set the reset signal discussed in Section 3.2.2 to one.  On the next clock cycle, the 

FSM moves into state f1 where all output signals are zero.  The FSM stays in state f1 until the 

failuredetected signal goes to one.  This moves the FSM into state f2 where it will clear the counter.  

States f3 and f4 are needed for the set_errsig and will be discussed in the next chapter.  Once 

finished, the FSM returns to state f1.  Notice that the valid buffer bits are only initialized in state f0 

and thus only after a reset.  The FSM integrated with the hardware described in the above sections 

integrated into the overall TM is shown in Chapter 6. 

3.2.4  Modifying the Port State Machines 

 The design so far is enough to detect the failure and to change the correct valid bit, but 

unfortunately the PSMs for the failed neighbor will remain in state s0.  This is because the transition 

from s0 to s1 is not based directly on the valid bits but relies instead on a separate register.  Details 

can be found in Appendix A.  The key point is that we need a way to push the PSM back into state s0 

after an error has been detected so that the TM will send out the next token wave.  To do this the 

PSM was modified such that it includes the failuredetected signal as a new input signal.  The 

transition from state s1 to s0 now occurs if the appropriate token has been received or if the failure 

detected signal becomes one.  The current configuration skips sending the last two reminder waves 

when a failure has been detected, since these waves would be ignored by all valid devices and would 

not be sent to the failed device.  

                                                      

* The final failure state machine is slightly more complex than the one shown in this figure, since it includes the set_errsig 
signal.  The final failure state machine with the set_errsig signal will be discussed in Chapter 4. 

f0 

[11] 

f1 

[00]

f2 

[01]

failuredetected

Reset Output signals: [ validreset, clear counter ]

Figure 3-6: Failure State Machine*: This state machine 
controls the failure counter and the valid bits buffer. 
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Chapter 
Four 

 

 Notifying Hosts of a Failed Neighbor 
This chapter examines the design, implementation, and testing of the second of the 
three hardware modifications.  This modification allows a TM to broadcast a one bit 
error signal to all hosts in the network.  The current isotach signal architecture was 
modified to allow timely propagation of the error signal and a mechanism for 
resetting the error signal.   

4.1  ADDITIONAL BACKGROUND: ISOTACH SIGNALS 

 A signal is a broadcast communication mechanism issued by an isotach host and delivered 

synchronously to all other hosts in the system [15].  The isotach specification requires that a signal 

be delivered to all hosts at the same logical time.  In order to guarantee proper delivery, isotach 

devices monitor a higher order logical time unit know as epochs.  If a token wave is analogous to a 

second, then an epoch is analogous to a minute.  The epoch length depends on the size of the 

network, and is thus stored on the PROM mentioned in Section 3.1.1.  As defined in the isotach 

design specification, “An epoch is some number of local time pulses (determined when the system is 

configured) greater than the diameter of the network.” [15] 

 The six isotach signals are implemented as a six bit field in the standard token definition.  Each 

of the first five bits correspond to application level signals, while the last bit is reserved as a system 

wide reset signal.  When a host issues a signal, the corresponding SIU will store the signal and wait 

until the next epoch boundary before sending the signal on to the network.  The token with the 

signal bit set will make its way to the next TM along the route, where that TM will store the signal 

bit.  From then on the TM will issue token waves with the appropriate signal bit set.  Since the 

epoch length is greater than the diameter of the network, all SIUs in the system will eventually 

receive the signal before the next epoch boundary.  At the next epoch boundary, all SIUs pass the 

signal on to their respective hosts.  In this way, the signal propagates through the network and is 

delivered to all hosts at the same logical time.  TMs clear their stored signal bits at the each epoch 

boundary so that new signals can be propagated in the next epoch.  It is important to note that the 

entire signal architecture assumes that only hosts can initiate a signal. [15] 
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4.2  DESIGN ALTERNATIVES 

 Chapter Three outlines the modifications necessary to handle a failed neighbor locally.  

Although a TM can detect and sever a failed neighbor, hosts will continue to operate under the 

assumption of a completely functioning network.  Hosts may need to redistribute the work load or 

begin using a replicated data storage in light of the failure.  Thus, there is a need to elevate the 

failure from the local hardware level to the higher host application level for more complex failure 

handling.  To address this need, I implemented a mechanism that allows TMs to notify all hosts in 

the system of a failure.  The primary requirements for the failure notification method is that it be 

both timely and robust. 

 The TM notification mechanism was constrained by the current isotach architecture.  A possible 

solution might be for TMs to store the routing information to each host and then to issue a special 

message directly to each host whenever a failure occurred.  This alternative, however, would require 

drastic changes to the current implementation.  My modifications needed to be subtle and exploit the 

current isotach functionality.  I decided to use isotach signals as the method for notifying hosts of 

the failure.  A disadvantage of this decision is that using signals for notification reduces the number 

of application level signals available for normal use. 

 The primary problem with isotach signals as a notification mechanism is that the signals were 

designed to be issued by hosts not TMs.  If a TM simply set a specific signal bit whenever a failure 

occurred, the epoch boundaries would interfere with the proper delivery of the error notification.  

For example, if a TM issued a failure notification near the end of an epoch, the signal may be 

cleared at the epoch boundary before it reaches all the hosts.  One way to resolve this problem is to 

implement all signals such that they no longer use epochs, but this would require significant 

modifications to both the TM and the SIU. 

 A very simple alternative is for the TM to wait until the next epoch boundary before sending the 

notification signal.  This alternative is advantageous, since it guarantees all hosts in the system will 

learn of the failure at the same time.  However, it also artificially delays delivery of the notification.  

A better alternative is to remove the failure notification signal from the epoch constraints so that it is 

not cleared at the epoch boundaries.  In this way, the notification reaches each host’s SIU as soon as 

possible.  The SIUs still buffer the failure signal until the next epoch boundary, so the SIUs would 

have to be modified to allow failure notifications to be sent to the host any earlier than the nearest 

epoch boundary. 



 

 24

 An important concern is that hosts are notified of the failure before any illegal messages reach 

the host.  Illegal messages are messages that originate from outside the LVR and thus do not abide 

by the isotach causal guarantees.  This is why the SIU would probably have to be modified to allow 

failure notifications to reach the hosts as soon as possible.  If the SIU waits until an epoch boundary 

to deliver the failure notification, then an illegal message may have already slipped though while the 

notification was pending.  Of course this discussion assumes that illegal messages are not sent until 

after a TM has sent several reminder waves and eventually declared the neighbor dead. 

 I chose to use a two bit failure notification mechanism.  The TM sets the first bit, called err_sig, 

when a failure is detected, and it propagates to the SIU without concern for epoch boundaries.  This 

notification will reach the SIU/host pair as soon as possible.  The second bit, called  err_clr, is 

issued by a host and propagates as a normal isotach signal.  TMs clear their err_sig bit when they 

receive an err_clr signal.  Err_clr signals also provide a uniform logical time for the failure, which 

allows hosts to agree when the failure occurred. 

4.3  MODIFICATIONS TO THE SIGNAL LOGIC 

 Normal isotach signals are stored in a buffer, called sig_buf, in the TM.  As described above, the 

sig_buf is cleared at each epoch boundary.  Some combinational logic before each bit of the sig_buf 

controls when the bits change.  For normal signals this combinational logic implements the 

following boolean equation where: S(i) is bit i in the sig_buf, P(i) is true when the most recently 

received token wave contained at least one token with signal bit i set to one, and E(i) is true at the 

epoch boundary. 

S(i) = (NOT E(i)) AND (P(i) OR S(i)) [eq 1]

To bring a signal outside the epoch constraint so that it is not cleared at each epoch boundary one 

need only modify this equation as follows: 

S(i) = P(i) OR S(i) [eq 2] 

The err_sig is defined to be signal bit 5, while the err_clr signal is defined to be signal bit 4.  The 

err_sig has the additional constraint that it becomes one if a failure is detected and is cleared if the 

err_clr signal is true.  If we let F indicate that a failure has been detected (F corresponds to the 

failure_detected signal discussed in Section 3.1.3), then the following equation indicates the 

combinational logic required to implement the err_sig. 

S(5) = (NOT S(4)) AND (P(5) OR S(5) OR F) [eq 3] 
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Modifying the combinational logic to implement equation 3 was largely trivial, and the final result is 

shown in Figure 4-1.  This figure is a magnified view of the actual TM schematic.  Notice that the 

err_clr signal is implemented as a normal isotach signal.  

 

Figure 4-1: Schematic of Err_sig and Err_clr Combinational Logic:  Implementing the err_sig 
signal required modifications to the combinational logic that precedes bit 5 in the sig_buf.  The 
err_clr signal was implemented as a normal isotach signal.  This is a screen capture of the actual 
modified TM schematic. 

 The problem with this approach is that the err_sig signal will be set to one on the wrong clock 

cycle. The combinational logic will correctly output a one, but the sig_buf will not be enabled until 

two clock cycles later when the next token wave is issued.  The result is that the err_sig is never 

sent.  To fix this, I needed to modify the failure state machine discussed in Section 3.2.3. 

err_sig 

err_clr 

set_errsig 

Signals 
from most 
recently 
received 
token wave 

epoch_boundary 

From previous 
sig_buf values 
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4.4  MODIFICATIONS TO THE FAILURE STATE MACHINE 

 

 

 

 

 

 To make sure that the err_sig was one the same clock cycle the sig_buf was enabled, I needed to 

delay the failure_detected signal.  I also needed to avoid disturbing the timing established in the 

previous set of modifications.  Therefore, two additional states and a new output signal were added 

to the FSM originally presented in Section 3.2.3.  This new output signal, set_errsig, is one for two 

additional clock cycles after the failure is first detected.  Thus, the set_errsig signal is used for F in 

equation 3 instead of the failure_detected signal.  Changing the combinational logic before the 

sig_buf and modifying the FSM were all that was needed to allow the TM to issue a failure 

notification to the hosts. 

 

f0 

[110] 

f1 

[000]

f2 

[011]

f3 

[001]

f4 

[001]

failuredetected

Reset Output signals: [ validreset, clear_counter, set_errsig ]

Figure 4-2: Modified Failure State Machine: The FSM presented in Section 3.2.3 was 
modified so that the set_errsig signal could be held long enough to be loaded into the sig_buf.
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Chapter 
Five 

 

 Token Manager Ping 
The third modification allows a host to specifically determine which TM has failed.  
A signal bit notification fits well within the current system architecture, yet fails to 
provide enough information for a host to appropriately address the failure.  This 
chapter examines the final modification, which enables a host to send a special 
message to a TM in order to verify the TM’s operational status.  When a TM 
receives this special message, known as a ping, it will return the message to the host.  
If the host does not receive the returned message, it knows the corresponding TM has 
failed. 

5.1  ADDITIONAL BACKGROUND: MYRINET ROUTING FLITS 

 TMs and other devices in the network 

send messages by attaching eight bit 

routing flits to the front of the message.  A 

flit refers to a byte used explicitly for 

routing through switches.  For example in 

the network shown in Figure 5-1, if TM A 

wishes to send a token to the SIU attached 

to port 0, it would need to place a single 

routing flit at the beginning of the message.  

This flit would direct the switch to take the 

message from port 3 and route it to port 0.  

In the process of routing the token, the 

switch strips the flit from the front of the message, and thus the SIU receives just the token with no 

routing flits.  For TM A to send a token to TM B, as is indicated by the dark arrow in the figure, it 

must add two routing flits: one to move the token through switch A and another to move the token 

through switch B.  The first flit would indicate a port 3 to port 2 route while the second flit would 

indicate a port 0 to port 3 route.  The key concept is that these routing flits allow messages to move 

through the network, and a flit is stripped off at each Myrinet switch. 
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Figure 5-1: How Messages are Routed in Myrinet: Each 
message has an eight bit flit to direct each Myrinet switch 
how to route the message through that switch. 
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5.2  GENERAL PING CONCEPT 

 A ping is similar to a self-addressed envelope (SAE).  Assume Person A wants to see if Person 

B is healthy.  Person A might send a brief message and a SAE inside a normal envelope to Person B, 

and ask Person B to return the SAE.  Notice that Person A must provide the address of Person B and 

the return address.  If Person A does not receive the SAE, Person B can be assumed to be unhealthy.  

A ping operates on the same principle: a host sends a ping that contains the routing information to 

get to a specific device, a brief message, and the routing information to return to the host. 

 The failure notification mechanism described in Chapter 4 will indicate to a host that a failure 

has taken place, yet it does not specify which particular isotach device is no longer operational.  A 

host needs a way to determine which specific TM has failed. 

 Tokens cannot act as pings since they are a fixed length and lack the space necessary for the 

routing information.  A possible solution is to create a new type of message specifically designated 

for TM pings, yet this would require special permission from Myrinet for the new message type.  A 

much simpler solution can be found if one observes the difference between isotach tokens and 

isotach messages.  Tokens are handled by both TMs and SIUs, but isotach messages are normally 

only seen by SIUs.  Under the current implementation, a TM will simply discard any isotach 

messages it receives.  I therefore decided that when a TM receives an isotach message it should 

interpret it as a TM ping.  This solution works within the current system architecture and does not 

require any modifications to the SIU. 

5.3  STRUCTURE OF A PING MESSAGE 

 A TM ping message consists of the following four parts: the route from the host to the TM, the 

isotach message type identifier, the route from TM to the host, and a brief message.  The message 

shown in Figure 5-2 is the format for a ping when it is first issued from a host.  Figure 5-2 also 

illustrates an example where host 1 wants to ping TM B to determine if it has failed.  The first part 

of the ping message is the routing information necessary for the ping to get to the TM, and it is 

removed as the ping moves through the various Myrinet switches.  In the example, there are two 

routing flits required to move the message from host 1 to TM B: one for switch A (port 0 to port 2) 

and one for switch B (port 0 to port 3).  When the ping message reaches TM B, the initial routing 

flits will have been completely stripped off leaving the last three parts.  The second part of the ping 

message is simply an isotach message type identifier, which is removed by the TM, while the third 

part is the return routing information.  By the time the ping has returned to host 1, all that will 
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remain is the dummy message.  The dummy message can contain any unique value, and it enables 

the original host to differentiate between multiple pings.  The main issue in such a design is 

handling the return routing information within the TM.  Two possible solutions will be examined in 

the next section.  

 

 

 

 

 

 

 

 

 

5.4  TWO METHODS FOR HANDLING RETURN ROUTE INFORMATION 

The TM needs to perform the following four steps in order to correctly handle host-to-TM pings:  

1. Recognize that the current incoming word is the first word in a ping. 
2. Remove the two byte isotach message type identifier. 
3. If a token wave is currently being issued, wait until the wave is finished. 
4. Pass the ping (return route information and dummy message) back onto the network. 

Step one was simply an issue of modifying the logic that examines the token type identifier, and step 

two was trivial.  Step four required modifying the state machines that monitor sending token waves 

so as to allow the output lines to serve a dual purpose: issuing token waves and returning pings.  

Step three, however, provided an interesting challenge. 

 The incoming network traffic comes through a first in first out buffer (FIFO) before it reaches 

the actual main FPGA.  This FIFO prevents the FPGA from missing anything if the incoming 

network traffic is arriving too quickly.  Kuebert decided to permanently wire the FIFO such that it 

was always enabled [7].  This means the FIFO will always output one word to the main FPGA every 

clock cycle.  This was a reasonable decision in the original implementation, since the TM is 

designed to always accept input.  This input is either discarded if it is not a token, or the applicable 

Route to TM (up to 5 bytes) Route back to host (up to 5 bytes) 

Isotach message 
type identifier 

(2 bytes) 

Dummy message  
(1 byte) 

Figure 5-2: A TM Ping Message: A ping 
begins with four parts.  As the ping travels 
to the TM, the initial routing information is 
stripped off.  The TM removes the isotach 
message type identifier and puts the 
remaining two parts back on the network. 
When the ping returns to the SIU, all that 
remains is the dummy message. 
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token information is buffered.  With respect to the host-to-TM ping situation, however, it would be 

useful if the main FPGA could force the input FIFO to pause for several clock cycles.  This would 

allow the main FPGA to finish sending the current token wave and then enable the input FIFO when 

the output lines were available.  The ping return route information could then be directly passed 

through to the output lines one word at a time irrespective of the actual length of the overall ping.  

The fact that this solution does not constrain the length of a host-to-TM ping allows any host to ping 

any TM in the network. 

 The first step to allow the FPGA to pause the FIFO is to sever the permanent connection 

between the FIFO enable and ground.  This connection is actually a piece of metal embedded in the 

PCB board, but it can be broken with a special knife.  A physical wire is used to attach the FIFO 

enable pin to a free pin on the main FPGA.  This connection is much less reliable than a permanent 

embedded connection, but it is a common technique used in constructing prototypes.  The FPGA 

logic could then directly enable or disable the FIFO.  The main problem with such a solution is that 

it requires drastic modifications to the PCB.  I decided to sacrifice the flexibility of unlimited size 

ping messages in order to achieve a less intrusive modification. 

 An alternative to forcing the FIFO to wait until the current token wave is sent is to simply buffer 

the ping message until the ping can be returned.  This requires the designer to set a limit as to the 

size of the ping.  After discussions with the isotach architects, I decided that a limit of two words for 

the ping message would be more than adequate.  Two 32 bit words contain eight bytes.  Two of 

these bytes would be reserved for the isotach message type identifier and at least one would be 

required for the dummy message.  This leaves a maximum of five bytes for the return routing 

information, and correspondingly, this limits a host’s ability to ping TMs.  A host can only ping a 

TM that is within five switches.  Although every host will not be within five switches of every TM, 

it is highly unlikely that there will be a TM that is not within five switches of at least one host.  This 

realization means that all hosts can still learn the status of all TMs if one takes a distributed 

approached to discovering the failed TM. 

 As an example, consider a large network with several TMs and hosts.  All hosts receive a failure 

notification signal and thus all hosts would like to determine which specific TM or SIU has failed.  

To do so, each host has a few TMs (within five switches) and SIUs for which it is responsible.  The 

host determines the status of all devices for which it is responsible and broadcasts this information 

to the other hosts.  The hosts can work together to quickly identify the failed device. 



 

 31

 The buffered return route approach constrains the size of the host-to-TM ping in two ways.  As 

discussed above, the total size of the host-to-TM ping cannot exceed 13 bytes: five bytes for routing 

to the TM, five bytes for routing from the TM back to the host, two bytes for the isotach message 

identifier, and one byte for the dummy message.  The minimum host-to-TM ping size is also 

constrained, since my modifications assume that the TM needs to buffer two words.  This is only a 

concern when a host is pinging a TM on the same adjacent switch (such as host 1 and TM A in 

Figure 5-2).  In this case, the total host-to-TM ping size would be five bytes: one byte for routing to 

the TM, one byte for routing from the TM back to the host, two bytes for the isotach message 

identifier, and one byte for the dummy message.  The problem is that when this ping reaches the TM 

it will only be one word long, since the first routing flit will have been stripped away.  The TM, 

however, expects all pings to be two words.  Therefore, when a host needs to ping a TM on the same 

adjacent switch, it should make the dummy message two bytes long.  This guarantees that the TM 

will always have two words of ping information to buffer. 

5.5  MODIFICATIONS TO THE INPUT STATE MACHINE AND THE RETURN ROUTE BUFFERS 

 Figure 5-2 shows the modified input valid 

state machine (IVSM).  The original state 

machine was comprised of only states s0 and 

s1.  State s2 was added to handle host-to-TM 

pings.  The state machine begins in state s0.  

Two separate blocks of logic control the 

buff_en and ping_valid signals.  Buff_en will 

be one if the current word from the input FIFO 

is the first word of a token, while ping_valid 

will be one if the current word is the first word 

of a host-to-TM ping.  As discussed above, the 

first two bytes of the first word of a host-to-TM 

ping will be the isotach message identifier.  Once the state machine enters either state s1 or s2, it 

will set either  ping_recv or inp_valid to one.  These output signals are used as enables for various 

buffers, which store parts of the incoming word from the FIFO. 

 A 16 bit buffer and a 35 bit buffer are used to store the return route.  Since two bytes of the first 

word of a host-to-TM ping are the isotach message identifier, one need only store the last two bytes 

of the first word.  The entire second word of the host-to-TM ping must be buffered.  The enable for 

 

Figure 5-3: Modified Input Valid State Machine: 
This state machine controls the movement of words 
from the input FIFO into the rest of the TM.  State 
s2 was added. 
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the return_route_word1 (16 bit) buffer is simply the ping_valid signal mentioned above.  The enable 

for the return_route_word2 (35 bit) buffer is the ping_recv signal from state s2 of the IVSM. 

 A small component adds 19 static bits to the first word of the return route.  These 19 bits include 

two bytes of all zeros and three Myrinet control signals.  The control signals inform the network 

what part of the 32 bit word is valid, and thus I used the control signals “010”.  These signals 

indicate that only the last two bytes are valid data.  For the second word, the control signals are 

buffered with the return route and are simply passed along to the output FIFO bus. 
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5.6  THE PING HANDLER STATE MACHINE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The ping handler state machine (PHSM) is responsible for getting the return route information 

from the buffers to the output FIFO.  The PHSM begins in state p0 where it remains during all 

normal TM activity.  When a host-to-TM ping is received (ping_recv from the IVSM is one), then 

the PHSM moves into state p1 where it will wait until the current token wave has been issued.  

While in state p1, the PHSM lets the master state machine know a ping has been received with the 

ping_waiting signal.  The send_ping signal comes from the master state machine, and it indicates 

that the all token waves have been sent.  The PHSM now moves into state p2 or state p3 depending 

upon whether or not the output FIFO is ready.  If the FIFO is not ready, the PHSM will simply wait 

in state p3 until it is ready.  In state p2, the PHSM puts the first word of the return route information 

into the output FIFO and then repeats the same procedure with states p4 and p5 for the second word.  

Once both words have been placed into the output FIFO, the PHSM returns to state p0. 

Figure 5-4: Ping Handler State Machine: 
This state machine controls the movement of 
the return route flits from the buffers to the 
output FIFO.  There are four output signals: 
ping_waiting tells the MSM to pause as soon 
as possible, the two sel signals control muxes 
at the output FIFO lines, and output_valid tells 
the output FIFO when the data is ready. 
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5.7  MODIFICATIONS TO THE MASTER STATE MACHINE AND AT THE OUTPUT FIFO BUS 

 As implied in the previous section, it was necessary to modify the master state machine.  The 

master state machine (MSM) is the main control structure for the entire TM and it is responsible for 

telling the sender state machine when to issue token waves.  I added a new state (labeled “1000”) to 

the MSM so that the MSM would pause while the return route information was being placed into the 

output FIFO.  The MSM will enter state “1000” from its primary wait state when the ping_waiting 

signal is one.  Since the MSM will finish sending any current token wave before returning to its 

primary wait state, we can guarantee that a ping will not interrupt a currently outgoing token wave. 

 In addition to modifying the MSM, I needed to multiplex the bus going to the output FIFO.  The 

ping2fifo_sel signal from the PHSM selects either the normal output from the sender or the output 

from the return route buffers.  The ping_word_sel signal chooses which word of the return route 

should be sent to the output FIFO.  An or gate was also needed to allow either the original logic or 

the new PHSM to set the output_valid signal.  This signal goes to the output FIFO and tells the FIFO 

when the data on the output FIFO bus is valid for buffering.  Figure 5-5 is a magnified portion of the 

TM schematic showing the multiplexors at the output FIFO bus. 

 

Figure 5-5: Schematic of Muxes at Output FIFO Bus:  Two 2:1 35 bit muxes were required at 
the output FIFO bus so that both normal token waves and return route information could be 
placed onto the output FIFO bus.  The select signals come from the PHSM.  This is a screen 
capture of the actual TM schematic. 

ping2fifo_selping_word_sel 

from normal sender 

return 
route 
words 

output FIFO bus 
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Chapter 
Six 

 

 Results: Schematics, Simulation, and Synthesis 
The previous three chapters individually outlined the design and implementation for 
the three modifications.  This chapter views the modifications from a system 
perspective in order to analyze their impact on the overall TM schematic, TM 
functionality, and FPGA constraints.  First, the original and modified TM schematics 
are presented.  Second, a few illustrative functional tests are discussed to 
demonstrate that the modifications perform as expected.  The last section describes 
the results from synthesizing the modified TM. 

6.1  THE TOKEN MANAGER SCHEMATICS 

 As discussed in Chapter 1, the Mentor Graphics tools allow a developer to connect various 

VHDL components in a system schematic.  This provides a graphic depiction of how the sub-

components are interconnected.  I have included both the original schematic and the modified 

schematic.  The original schematic can be found in Figure 6-1, and it is annotated to denote the 

various parts of the TM.  The TM can be divided into three main regions: the receiver, the control 

unit, and the sender.  The receiver is responsible for storing the information contained in each 

incoming token, while the sender is responsible for managing the issue of token waves.  The control 

unit coordinates the receiver and the sender and monitors device timeouts. [More detail on the 

original hardware can be found in Appendix A]  This figure clearly indicates the need for a detailed 

study of the original hardware before attempting modifications.  With a system this complex, each 

component is closely interrelated with several other components.  When modifying the TM, I was 

required to carefully consider each modification’s impact on the rest of the system. 

 Figure 6-2 shows the TM schematic after all three modifications have been fully implemented.  

Each modification is highlighted in a different color.  Notice the wide scope of the modifications.  I 

modified several of the original finite state machines and created several new components. 
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6.2  FUNCTIONAL SIMULATION 

 Using a VHDL simulator, I was able to functionally verify that the modifications performed as 

expected.  The simulations began with a script file that instructed the simulator on the initial values 

for the signals in the system.  [The script files can be found in Appendix B]  The simulator uses the 

script file to simulate the entire TM and produce a waveform trace.  These traces illustrate what is 

going on inside the TM and help the developer determine if the TM is functioning correctly.  Two 

functional tests are included in this chapter to illustrate the functional correctness of my 

modifications.  The first test examines the failure detection and notification, and the second test 

examines the host-to-TM ping handling.   

 The first test is shown in Figures 6-3, 6-4, and 6-5.  Figure 6-3 illustrates the complete 

procedure for failure detection, handling, and notification.  The test begins with the TM issuing its 

first token wave, and the script file artificially responds by sending tokens back to the TM.  Notice 

that the send_auth signal has one zero indicating that the TM is waiting to receive a token from that 

device.  The timeout signal goes high, and so the TM issues a reminder wave.  The neighbor still 

does not respond, and the TM experiences another timeout.  This time the failure_counter has 

reached the failure_threshold, so the TM declares the unresponsive neighbor dead.  Examining the 

valid_buf signal shows how the TM switches the bit corresponding to the unresponsive neighbor 

from a one to a zero.  The sig_buf shows that the TM sets the err_sig bit to one in order to notify 

hosts of the failure.  The TM issues a new token wave (with the err_sig bit set) and will neither 

expect tokens from nor send tokens to the dead neighbor.  The script file responds by having the 

valid neighbors send tokens back to the TM.  I have setup the test such that this token wave also 

includes the err_clr signal.  Correspondingly, the err_sig bit is cleared.  Notice that the err_clr signal 

is cleared as a normal isotach signal at the end of the epoch.  Figure 6-4 shows a magnified area of 

the trace when the failure is detected.  Figure 6-5 is a trace from a slightly different script file.  This 

figure verifies that the err_sig is not cleared at epoch boundaries.  As discussed in Chapter 4, this is 

a key requirement for timely failure notification. 
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 The second test examines the host-to-TM ping.  Figures 6-6 and 6-7 illustrate how the TM 

handles the ping.  Figure 6-6 shows a ping arriving at the TM on the from_fifo lines.  The 

ping_valid signal goes high indicating that this ping has the correct ping message identifier, and 

therefore the TM buffers the return route information (as illustrated by the return_route_word1 and 

return_route_word2 signals).  The TM then places each of the two words onto the to_fifo lines.  The 

entire ping handling process takes seven clock cycles.   

 Figure 6-7 demonstrates how the TM handles a ping when it is received while a token wave is 

being issued.  The TM cannot immediately put the return route onto the to_fifo lines since the 

sender is using these lines.  Instead the TM must wait until the token wave is finished before 

handling the ping.  The from_fifo signals in Figure 6-7 show when the ping is received.  Notice that 

the ping_waiting signal goes high to remind the TM that it needs to handle the ping once the current 

token wave has been sent.  Once the sender state machine is done, the master state machine enters 

state “1000” (as seen on signal master_sm/state).  The return route can be seen on the to_fifo lines. 
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6.3  TOKEN MANAGER SYNTHESIS 

 Synthesis is the process by which VHDL is transformed into the actual FPGA hardware logic.  

A real concern was whether or not the modifications would cause the TM to exceed the maximum 

capacity of the main FPGA.  To address this concern, I used three tools to generate, place, and route 

the design: galileo, mapsh, and parsh.  These tools provide information on the size of the design 

compared to the maximum possible size.  Additionally, the parsh tool tries to connect together the 

various pieces of hardware logic, and thus it reports on whether or not it was able to route the 

design.  Some basic timing information can also be gathered from the parsh tool.  As described in 

Section 1.3.1, a Lucent ORCA or2c40a FPGA was used for the main FPGA.  This chip has a 

maximum capacity of 900 PFUs.  Table 6-1 shows the PFU usage for the original design and after 

each of the three modifications. 

TM Version PFUs Flip-Flops Combinational 
LUTs 

Original 488 (54%) 459 531 
with Modifications #1 482 (53%) 485 486 
with Modifications #1, #2 511 (56%) 486 514 
with Modifications #1, #2, #3 525 (58%) 542 467 

Table 6-1: FPGA Usage: The table illustrates how the modifications impacted the size of the design.  
The or3c40a FPGA has four flip-flops and four LUTs per programmable function unit (PFU). 

Notice that the size of the design in PFUs actually decreases following the initial set of 

modifications.  This is counterintuitive, since one would think that making additions to a design 

would generally make that design larger.  The reason for this discrepancy is probably due to the 

structure of a single PFU.  Each PFU contains four flip-flops.  Thus, a whole PFU is considered ‘in 

use’ whether one flip-flop is used or all four flip-flops are used.  The original design may have had 

several PFUs that were not fully exploited, and thus, the modifications simply took advantage of the 

unused portions.  This might explain why the size would stay the same, but it does not explain why 

the size actually decreased.  Notice in Table 6-1 that the first set of modifications resulted in an 

increase in the number of flip-flops but a decrease in the number of combinational look up tables 

(LUTs).  The computer tools may have been able to better optimize the combinational logic after the 

additions were made.  If additional flip-flops were placed in partially used PFUs and additional 

combinational logic allowed for further optimization, it is quite possible that the number of  PFUs 

might decrease after making additions.  
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 The key point from Table 6-1 is that all three modifications cause an eight percent increase in 

the total PFU usage for the main FPGA.  This brings the final FGPA capacity to 58%.  Although far 

from being completely full, it is important to note that as a design nears 60% capacity, the design 

becomes much more difficult to route.  Therefore, I also used the parsh tool to verify that the final 

design could be routed successfully. 

 Routing a design is a non-deterministic problem, and therefore, various runs of the parsh tool 

can result in different routing.   These different interconnects can result in drastically different 

design speeds.  Brian Kuebert, the electrical engineer responsible for the original TM, used a 

conservative single routing pass, and thus, I used a similar method.  I also attempted a much more 

aggressive routing strategy using several optimization passes.  The result was much lower delays 

through the TM.  These timing results are shown in Table 6-2.  It is important to note that this 

timing analysis is not particularly accurate and simply allows one to qualitatively examine the 

impact of the modifications on the overall design’s speed.  As expected, the delay through the TM 

increases after the modifications.  One area where the modifications definitely slow down the 

original design is at the output FIFO bus where I added a 2:1 mux.  This mux will introduce an 

additional delay in the TM’s primary output path. 

TM Version Avg Connection 
Delay (ns) 

Max Delay From 
Pin-to-Pin (ns) 

Original 8.92 41.72 
with Modifications 10.13 57.71 

Original (multi-pass) 6.00 17.01 
with Modifications (multi-pass) 6.59 18.47 

Table 6-2: Timing Results: The parsh tool gives basic timing information that can be useful in 
qualitatively examining the modifications’ impact on the overall TM’s speed.  The aggressive 

multi-pass routing strategy produced much better timing results. 
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Chapter 
Seven 

 

 The Logical Dead Space Problem 
Dead space is a consequence of the modifications discussed in Chapter 1.  It refers to 
an area of the network where logical time has stopped (the inverse of the LVR).  The 
underlying problem is that although tokens are barred from entering dead space 
(through the Chapter 1 modifications), isotach messages are not similarly 
constrained.  This means that a host in the LVR could receive an isotach message 
originating outside the LVR, which could easily violate causal guarantees.  The dead 
space problem was one of the main reasons failed neighbor handling was not 
included in the original prototype, thus this chapter explains how the three 
modifications presented in the previous chapters can work together to address this 
problem. 

7.1  WHAT IS DEAD SPACE? 

 Figure 7-1 illustrates a typical dead space 

scenario.  The circles represent a host/SIU pair, 

while the squares represent TMs and SIUs.  The 

key to understanding dead space is the difference 

between how isotach tokens and isotach messages 

propagate through the network. 

 As discussed in earlier chapters, tokens move 

from TM to TM to SIU in the form of token 

waves.  SIUs handle tokens exactly like a TM: 

when they receive a token they increment their 

internal logical clock and send a new token with 

the incremented timestamp.  Isotach messages, 

however, do not move from TM to TM.  Instead they simply move through the Myrinet switches like 

normal network traffic until they reach the target host’s SIU where they are buffered.  For example, 

assume that TM 2 has not failed in Figure 7-1.  Then a token moving from host 1’s SIU would move 

through switch 1 (S1) and stop at TM1.  It would then move through switch 2 (S2) and stop at TM2, 

 

Figure 7-1: Dead Space: Dead space, the inverse 
of the LVR, can cause problems since tokens and 

isotach messages propagate differently.   
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and so on until it reaches host 5’s SIU.  An isotach message would simply move through each of the 

three switches until it reaches host 5’s SIU. 

 Now assume TM2 has failed.  TM1 and TM2 will both declare TM2 dead and will 

correspondingly stop sending tokens to or expecting tokens from TM2.  This partitions the network 

into two separate and unsynchronized LVRs.  The problem is that although tokens can no longer 

pass through the logically dead space, isotach messages can freely move between LVRs through the 

dead space.  Similarly, messages can be generated within the dead space by host 3 and then sent into 

the LVRs.   

 Let us examine the dead space problem with other component failure modes.  If the network link 

connecting two switches fails or if a switch itself fails, then the network will be physically 

partitioned instead of logically partitioned.  A physical partition avoids the dead space problem, 

since neither tokens nor isotach messages can travel through a failed network link.  A network link 

failure between a switch and a TM will act the same as a failed TM, and thus, the dead space 

problem will still be present.  Notice that a failed SIU can cause similar problems, even though the 

dead space is not in the middle of the network.  The SIU failure could take many forms and even 

though it may not be responding to its neighboring TM, it could still allow isotach messages to pass 

onto the network.  Thus isotach messages are being generated in dead space and then allowed to 

travel into the LVR. 

 The dead space problem is significant since it allows messages to violate the fundamental 

isotach synchronization guarantees.  The problem seems to outweigh any benefit derived from 

handling the failure and allowing a portion of the network to continue to function.  The three main 

solutions to the dead space problem will be discussed in the next section. 

7.2  SOLUTIONS TO THE DEAD SPACE PROBLEM 

 The first solution to the dead space problem is to simply assume a fault free network.  This was 

the isotach group’s original strategy, and it is quite reasonable when one considers the probability of 

TM or SIU failure.  These isotach devices have been thoroughly tested and use highly reliable parts 

so that a TM or SIU failure is theoretically unlikely.  Unfortunately, there has been no quantitative 

analysis of the isotach hardware devices’ reliability.  Furthermore, a TM or SIU failure is critical.  

Such a failure mode causes the entire isotach network to come to a halt.  Providing a mechanism for 

handling TM and SIU failure, even though such failures are rare, is important to creating a robust 

and fault tolerant isotach implementation.  
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 Another solution to the dead space problem is the barrier method.  The idea is to create a barrier 

in the dead space that prevents isotach messages from passing through.  The most drastic possibility 

is to force the switch to fail whenever its adjacent TM fails.  This would be both difficult to 

implement and would hinder non-isotach network traffic.  Another possibility is to make isotach 

messages propagate from TM to TM in the same way as tokens.  When a TM or SIU fails, the 

neighboring TM would disregard isotach messages in the same way it disregards tokens and 

effectively create a barrier in the dead space.  Unfortunately, this solution would require a 

completely new implementation of the TM. 

 The third solution is the invalidation method.  The idea is to give a host or SIU in the LVR the 

ability to differentiate between messages that originated inside the same LVR and messages that 

originated outside the LVR.  Adding this capability to the SIU would require extensive hardware 

modification.  Allowing the host to decide the validity of an isotach message is much more 

reasonable.  The host could proceed as normal until it receives notification of a failure.  The host 

would then move into a failure mode where it identifies the failed device and disregards any 

messages that originate from outside the LVR.  The additional overhead involved in checking the 

validity of isotach messages would not be trivial, but it would only be required when a failure has 

actually occurred.  The three modifications described in Chapters 3, 4, and 5 provide the tools 

necessary to implement this solution. 

7.3  HOW ALL THREE MODIFICATIONS ADDRESS THE DEAD SPACE PROBLEM 

 Let us examine the failure scenario presented in the previous section and in Figure 7-1.  TM2 

has failed and TM1 and TM3 correspondingly send several reminder waves.  Once the failure 

threshold has been exceeded, both TM1 and TM3 declare TM2 dead and set the appropriate valid bit 

to zero.  TM1 and TM3 will no longer expect tokens from TM2, nor will they send tokens to TM2.  

Both TM2 and TM3 will then set err_sig to one in the next token wave.  Hosts 1, 2, 4, and 5 will 

receive the notification, but host 3 will be unaware of the failure since tokens cannot enter dead 

space.  These hosts will then attempt to determine which SIU or TM has failed. Each host will then 

ping each of the three TMs to determine which has failed.  Notice that all hosts can ping all TMs 

since no TM is more than five switches away from all hosts.  Pings to TM2 will not be returned 

since that device has failed.  Once all hosts have determined that TM2 has failed, the hosts should 

send an err_clear signal.  This signal will reset the err_sig in all working TMs. 
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 If a SIU had failed instead of a TM, a host would still ping all TMs first.  Once the host had 

determined that a TM has not failed, the host could send isotach messages as pings to the other four 

hosts in the network.  If one of the other hosts did not return the isotach message then that SIU/host 

pair is assumed to have failed.  Hosts cannot perform this host-to-host pinging first, since hosts in a 

dead space caused by a failed TM will be unable to return a direct ping.  In Figure 6-1, host 3 

cannot return a host-to-host ping since the failed TM2 will stop logical time and prevent host 3’s 

SIU from ever delivering an isotach message. 

 Hosts can determine the location of LVRs and dead space by combining failure and network 

layout information.  Once determined, hosts in the LVR can notify hosts in the dead space (such as 

host 3) that they are in a logically invalid area and should cease sending isotach messages.  This will 

help to reduce the number of illegal messages in the network.  In order for a host to determine the 

validity of an incoming isotach message, a host will have to know routing information about the 

message.  Under the current implementation, such routing information is not normally included in an 

isotach message, but such information could be made a standard part of all isotach messages.  This 

would increase the size overhead of messages but would also provide a mechanism to determine if a 

message has passed through dead space.  If messages are always routed the same way from one host 

to another, then the routing information may just be a sending host identifier. 

 All three modifications work together to help address the dead space problem.  With additional 

handling at the host level, these modifications can prevent illegal messages by allowing a host to 

recognize when messages originated outside of the LVR.  There are probably several more efficient 

methods for addressing the dead space problem, yet this solution requires a minimum of hardware 

modifications and fits well within the current system architecture. 
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Chapter 
Eight 

 

 Conclusions 

8.1  PROJECT SUMMARY 

 This report described the design, implementation, and testing of three hardware modifications 

that allow an isotach token manager to handle failed neighbors.  The first modification enabled a 

TM to detect and handle the failure, while the second modification provided a mechanism for the 

TM to notify all hosts in the system of the failure.  The third modification implemented a host-to-

TM ping.  These three modifications work together to address the logical dead space problem, an 

anomaly that results from logically severing an isotach device.  All three modifications were 

successfully implemented and functionally simulated. 

 The primary design principle throughout the project was to minimize the modifications’ impact 

on the implementation as a whole.  I avoided designs that would require extensive changes to the 

SIU or components external to the TM’s main FPGA.  Additionally, I analyzed the impact of my 

modifications on the main FPGA capacity usage.  The final results revealed an increase of eight 

percent in capacity usage between the original and modified token managers.  This design principle 

helped make the modifications reasonable to implement and acceptable to the isotach research 

group.   

 This report targeted failed TMs and SIUs, yet the modifications also address the issue of failed 

network links and switches.  These additional failure modes will appear the same to the neighboring 

TM, and thus, the TM will detect and handle them in a similar manner.  This report primarily 

focused on a neighboring TM failure, yet the approach is applicable to several failure modes. 

 Although each of the three modifications can be seen to meet a specific need, all three 

modifications work together to address the logical dead space problem.  The logical dead space 

problem was the primary reason the isotach research group did not provide a permanent fault 

detector in the original implementation.  It was important that I address this problem and modify the 

TM so that the network could properly manage logically dead space following an isotach device 

failure.  The modified TM can detect and sever a failed neighbor and thus prevent tokens from 
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crossing a logically dead space or entering into the LVR.  The modified TM can also notify all hosts 

of the error so that the hosts are aware that illegal messages may be present in the network.  

Furthermore, the TM can handle host-to-TM pings that allow a host to determine which specific 

isotach device has failed.  When all three modifications are used together, they can allow the 

network as a whole to address the logical dead space problem.  This may not be the most direct 

solution, but it works well within the original system architecture and requires a minimum number 

of changes. 

8.2  REFLECTIONS AND INTERPRETATION 

 The modifications described in this report are relatively simple, yet their implementation was far 

from trivial.  The modifications attempted to alter an extremely complex system that lacked detailed 

documentation and included several interacting subsystems.  Consequently, I needed to perform an 

extensive study of the original hardware before attempting to make alterations.  A real danger in 

modifying complex systems is that changes can appear to function correctly, but in reality they may 

fail to address a certain case or lack a specific piece of logic.  A thorough understanding of the 

original implementation as well as extensive functional testing help to mitigate this risk. 

 It is important to realize that a primary application for isotach networks is as a distributed 

control system on naval ships.  DARPA has provided a significant portion of the isotach group’s 

funding over the last three years, and thus it is quite possible that isotach networks could be used in 

real world naval control systems.  These are critical control systems where the lives of many people 

and millions of dollars of equipment are at stake.  In such situations, even improbable failures could 

have serious repercussions.  DARPA is providing additional funding for the project this year 

specifically for the isotach research group to study fault tolerance.  My work directly contributes to 

this goal of robust and practical isotach networks. 

 There are other more immediate impacts of my work.  The newly modified VHDL could be used 

as a basis for the next version of the hardware prototype.  The modifications address a specific 

failure mode, and if combined with further fault tolerance functionality, the next hardware prototype 

could be much more robust that the current implementation.  This report can serve as a preliminary 

test implementation when the isotach research group formalizes their ideas on fault tolerance.   

 This report can also serve in two reference capacities.  The first two chapters provide a general 

description of isotach networks to the non-technical reader, and thus, this report can serve as an 

introduction for other students interested in working on either the software or the hardware aspects 
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of the isotach project.  Secondly, this report complements Brian Kuebert’s documentation of the TM 

hardware implementation.  The original hardware is described in this document on the signal level 

and could be quite useful for students interested in making additional hardware modifications to the 

TM. 

8.3  RECOMMENDATIONS 

 There are several opportunities for further related work.  The most direct extension of this report 

would be to conduct further functional and timing simulation, reprogram the main FPGA, and test 

the fault tolerant TM in the isotach testbed.  This work would take my work from inside the 

computer and put it into the actual TM board.  Another useful modification would be to alter the 

SIU to pass failure notification through to the host without waiting for an epoch boundary. 

 A more divergent research opportunity would be to address host failure.  This ambitious task 

would require modifying the SIU such that it provided mechanisms to detect and handle a failed 

host.  This is particularly relevant since host failures are much more likely than isotach device 

failures.  Also of interest is the complex problem of recovering failed isotach devices and failed 

hosts.  Failure recovery could potentially require synchronizing multiple partitions in the network, 

which is a challenging theoretical and practical problem. 

 This report has outlined the modifications necessary for a TM to detect and handle failed 

neighbors.  The report includes design decisions, implementation details, simulation results, and 

dead space strategies.  This report can serve as a reference, a basis for further modification, or 

simply as an addition to the isotach research group’s year long focus on fault tolerance.  Hopefully, 

this undergraduate thesis has in some small way contributed to making isotach networks more robust 

and thus a practical solution to real world problems. 
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Appendix A: Detailed Description of Original Token Manager Design 
The hardware implementation assumes a 160 MHz Myrinet network and that the token manager is 

attached to a Myrinet switch.  The overall data flow can be seen in Figure A-1. 

Figure A-1: General Dataflow Diagram 

The Myricom FI chip is responsible for taking the 160 Mhz eight bit data stream and reducing it to a 40 

Mhz 32 bit data stream.  The FIFOs are two kilobytes by 36 bits and serve as the interface between the 

Main FPGA and the FI chip.  The routing FPGA is loaded from the PROM upon start up.  This FPGA 

simply stores all variables for the system including the number of ports on the adjacent switch 

(small_or_big), the epoch length (epoch_length), which ports are Isotach ports (valid[]), which ports have 

TM's attached to them (tin_or__siu[], and routing information for ports which have TM's attached to them 

(route[]).  These parameters are discussed in more detail in later sections. 

The D flipflop shown attached to the main FPGA is used to hold the state of the reset LED.  This 

reset LED is used to help solve situations where reset tokens are lost.  From the specification, "Every TM 

and SIU has an LED indicator that toggles between on and off with each reset.  If the LED's of all the 

TM's and SIU's are initially on, then after reset they should all be off." If an LED remains on then it did 

not receive the reset token.  A toggle switch on the TM should be pressed and a token with the reset bit 

set should be resent. 

The remaining portion of this section will focus on the main FPGA since it contains the bulk of the 

TM functionality.  The main FPGA design includes three logical sections: the receiver, control unit, and 

sender.  The receiver handles decoding and storing the token, while the sender handles assembling an 

output token and putting it into the output FIFO.  The control unit is responsible for managing the 

receiver and the sender.  The control unit keeps track of timeouts and tells the sender when to send 

reminder tokens. The main FPGA dataflow is shown below and illustrates how the three logical sections 
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work together.  It is helpful when reading about the logical sections to also examine the schematic.  The 

schematic itself is physically quite large so a scaled version was presented in Chapter 6 of the text. 

Figure A-2: Main FPGA Dataflow Diagram 

A.1 The Receiver 

A token arrives as two 35 bit words in the input FIFO.  The first word contains the FI control signals, 

Isotach packet type, sequence number, from port, signal bits, and barrier bits.  The second word contains 

the FI control signals and the CRC.  The receiver's input buffer performs the following steps: 

1. Examine the first word and verify the correct FI control signals (000) and Isotach packet 
type (0x0601) 

2. Temporarily store the sequence number, from port, signal bits, and barrier bits 

3. Look at the next word and verify the correct FI control signals (111) and that the CRC 
byte is all zeros. 

4. If both words are valid then allow the temporarily stored token data to be distributed 

Thus the input buffer verifies the validity of the token under consideration.  If it is valid, then the token, 

signal, and barrier registers are enabled.  If either word is invalid, the registers are not enabled and a new 
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token will be examined (the invalid token data will be correctly overwritten).  [The input buffer is 

described in more detail in Section A.4] 

The token, signal, and barrier registers store information concerning tokens to be used by both the 

control unit and the sender.  Each of the registers is a set of four registers, one for each sequence number 

(zero through three).  It is important to realize how the TM handles logical time.  A counter closely 

associated with the master state machine in the control unit keeps track of a W value.  W is a number 

ranging from zero to three and is the internal representation of logical time in the TM.  W is the number 

of waves sent modulus four.  The TM is waiting for tokens with a sequence number of W-1.  The TM 

uses the sequence number field in the token to determine which of the four registers to use. 

Each of the four token registers is 15 bits wide, one bit for each port.  A bit in the register is set to one 

when a valid token is received on the corresponding port.  Thus an entire token wave has been received 

for a specific sequence number when all bits in the token register with the corresponding sequence 

number are ones.  A decoder uses the from port field in the token to determine which port the token came 

from and thus enable the correct bit in the token registers.  Each of the four signal registers is six bits wide 

since there are six signal bits in a token.  Thus all six bits, regardless of value, are put into the appropriate 

signal register.  There are two sets of four barrier registers.  This is because any one token can have two 

distinct barriers.  All barrier calculations must keep these two barriers separate.  Each of the eight barrier 

registers is 15 bits wide, one bit for each port.  Again the from port field in the token is used to enable the 

correct bit in the barrier register.  A bit in a barrier register is set to one if the barrier bit in the token for 

that sequence number is one.  A cumulative collection of barrier and signal bits is stored in the sender and 

will be discussed below. 

Certain registers in the receiver are cleared every token wave.  This prevents one wave's information 

from being confused with a wave that occurred four waves earlier.  After a wave with sequence number x 

is sent, then x-1, x-2, and x-3 registers will be cleared.  Notice that sending a wave with sequence number 

x relies upon signal and barrier information from x-1, thus it is appropriate to clear x-1.  Registers with a 

sequence number x are not cleared since they could contain information concerning tokens that have 

arrived early.  Registers are cleared to all zeros.  The only exception is the barrier registers for sequence 

number zero.  These registers are cleared to all ones at startup to force the first token wave to be a barrier 

wave. 

A.2 The Control Unit 

The control unit has three main parts: the port state machines (PSM), the master state machine 

(MSM), and the timer.  There is a PSM for each of the 15 possible ports.  They keep track of whether or 

not a valid token has been received for the corresponding port and with a sequence number of W-1. [see 



Section A.5 for details on the port state machine]  The MSM monitors all of the PSMs.  Once all of the 

PSMs indicate that a token has been received, then the whole token wave has been received, and the 

MSM signals the sender state machine (SSM) to send the next token wave.  Once a token wave is 

successfully sent, W is incremented.  [see Section A.6 for details on the master state machine] The MSM 

uses the timer to determine if it has been waiting too long for any one token.  If a timeout occurs, the 

MSM notifies the SSM to send token waves with sequence numbers W-2 and W-1 (the last two waves 

sent). 

4.3 The Sender 

The sender is responsible for assembling an output token and putting it into the output FIFO.  The 

sender state machine (SSM) manages the sender and handles looping through all tokens so as to send a 

token wave. [see Section A.8 for details on the sender state machine]  The sender has two fundamental 

inputs which dictate how it creates a token wave: the sequence number of the outgoing token wave 

(TS_to_send) and whether or not this is a reminder wave (reminder).  The TS_to_send allows the sender 

to retrieve the correct signal and barrier data from the receiver and is also used to fill the sequence 

number field in the outgoing token.  Cumulative signal bits are stored in a register in the sender.  This 

cumulative signal register is cleared at the end of an epoch.  Epochs are a number of token waves and the 

epoch length is specified as an initialization parameter.  Epochs guarantee that a signal will get 

propagated to all hosts before being cleared.  Cumulative barrier bits are stored in an active and inactive 

barrier register according to the specification.  For normal token waves the signal and barrier cumulative 

registers are used to fill the signal and barrier fields in the outgoing token.  These normal values are also 

stored in one of four previous registers.  There is one previous register for each sequence number. 

For reminder waves, the sender uses the correct previous register instead of the signal and barrier 

information from the receiver.  This is the only difference between a normal and reminder wave.  Notice 

that the sequence number need not be altered for reminder waves.  The appropriate sequence number is 

sent by the master state machine as the TS_to_send. 

The SSM will send a token on each port by correctly adding appropriate routing information to the 

beginning of the outgoing token.  If the token is meant for an SIU one routing flit will be added that tells 

Myrinet how to get from the TM to the SIU.  If the token is meant for another TM, then two routing flits 

must be added.  Since each outgoing token is two words in length, the SSM coordinates sending both 

words including adding the CRC byte as part of the second word. 



A.4 The Input Buffer State Machine 

Figure A-3: Input Buffer State Machine 

The input buffer section of the receiver handles error checking.  It contains five parts: a 35 bit 

register, a 16 bit register, the input buffer state machine (IBSM), a packet type verifier, and a CRC 

verifier.  A valid token will have two 32 bit words.  In the beginning of each word, there will be the 

appropriate three bit FI control signal.  The appropriate control signals are found in an informal email 

from Myricom to the Isotach development team.  These control signals tell the FI chip which bytes in the 

current word are valuable and which can be ignored.  A control signal of 000 on an incoming token 

indicates that all four bytes in the word are valuable.  A control signal of 111 on an incoming token 

indicates that only the first byte in the word is valuable, and that the remaining three bytes can be ignored. 

Figure A-3 shows that two conditions must be true in consecutive clock cycles in order for the 

inp_valid signal to become one: buff_en must be one and then in the next clock cycle verify must be one.  

These conditions are set by the packet type verifier and the CRC verifier respectively.  Token data will 
only be loaded into the various registers in the receiver if inp_valid is one. 

Every clock cycle, the next word in the FIFO is placed in the 35 bit register.  The packet type verifier 

checks to see if the first 19 bits of the current word are 000 (the appropriate FI control signals) followed 

by 0x0601 (the token packet type).  The CRC verifier checks to see if the first bits of the current word are 

111 (the appropriate FI control signals) followed by eight zeros (the CRC byte).  If the packet type 

verifier sets buff_en to one in the first clock cycle, then the token data will be loaded into the 15 bit 

register and the IBSM will enter state s1.  The IBSM waits one clock cycle to see if the CRC verifier sets 

verify to one.  If so, then this is a valid token and inp_valid will go to one allowing the token data to be 

loaded into the appropriate registers in the receiver.  After one clock cycle the IBSM returns to state s0. 
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4.5 The Port State Machine 

Figure A-4: Port State Machine 

There are 15 port state machines (PSMs) in the control unit, one for each port.  Send_auth is a 

transition signal for the MSM.  The PSM begins in state s0 and thus notice that all PSMs will indicate to 

the MSM that a token wave should be sent upon reset.  Once a token wave is sent, the MSM sets Sent to 

one and the PSM enters state s1.  It waits here until the corresponding bit in the appropriate token register 

becomes one, at which time the PSM enters state0 and sets send_auth to one. 

A.6 The Master State Machine 

Figure A-5: Master State Machine 

The master state machine (MSM) monitors the PSMs and tells the SSM when to send what.  It begins 

in state m0 and waits until either all tokens are received (i.e. send_auth for all PSMs becomes true) and 
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the sender is finished with the previous wave (Ok_to_send = 1) or the timer expires (and thus timeout 

becomes true).  The timer state machine (TSM) handles the Timeout signal. 

If both a timeout and all PSMs’ send_auth become true in the same clock cycle, the MSM gives 

priority to the transition into state m1.  Once a wave has been received, the MSM enters state m1 and sets 

TS_to_send to the current W value.  Send_now is a transition signal for the SSM.  The MSM then 

automatically enters state m2 and waits until the SSM sets OK_to_send to one indicating that it is has 

finished.  Now in state m3, the MSM increments W modulus four, sets Sent to one so that the PSMs can 

begin waiting for new tokens, and resets the timer.  The flow LED is an external LED that changes color 

after every normal token wave sent.  Upon proper operation, a red-greed LED should appear orange since 

the LED is flipping back and forth extremely fast. 

If a timeout occurs, the MSM will enter state m4.  The MSM signals the SSM that this is a reminder 

wave and sets the first reminder wave's sequence number to W-2.  As in normal operation, the MSM 

waits until the SSM has finished sending that wave and then signals the SSM to send the second reminder 

wave with a sequence number of W- 1.  Notice that the MSM resets the timer in state m6.  Once the SSM 

is finished with this second reminder wave, the MSM returns to state m0. 

A.7 The Timer State Machine 

The timer state machine (TSM) is responsible for monitoring the 'timer' and signaling the MSM when 

a the 'timer' expires.  The state machine for the TSM is shown on the next page. The timer is really just a 

counter with a slower clock (the counter_clk).  When this counter expires, it sets TO_raw to one.  TO_rst 

is the reset_timer signal from the MSM.  Signal6 refers to the sixth signal bit which indicates a software 

reset.  Rest_recv is a signal from the sender that indicates a wave has just finished being sent.  Notice the 

buzzer output.  This signal goes low whenever there is a timeout or a software reset. 

The TSM begins in state t0.  For now, assume that a reset token will not arrive.  The TSM waits until 

the counter_clk is zero and then enters state t8 where it sets the counter_rst to one.  The TSM must then 

wait for the counter_clk to become one.  The reason the TSM must include this state, which is trigger by 

the counter_clk, is because the counter_clk is slower than the TSM clock and the counter_rst signal is 

wired to a synchronous clear input on the counter.  If the TSM did not wait to guarantee that the 

counter_clk goes high, then the counter_rst signal could go back to zero before the counter actually got a 

chance to register the clear.  Once the counter has been cleared, the TSM moves into state t1.  The TSM 

waits in state t1 while the counter is running.  If the counter expires (i.e. TO_raw goes to one) a timeout 

has occurred and the TSM moves into state t2.  If the MSM receives all the appropriate tokens, then a new 

wave is sent and the TSM is reset through setting TO_rst to one (and thus the TSM will move back 

through states t0 and t8 to clear the counter). 
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Figure A-6: Timer State Machine 



 

When the TSM enters state t2, it signals the MSM that a timeout has occurred through the timeout 

signal and resets the counter.  While in state t2, the TSM waits until the MSM resets the TSM (i.e. TO_rst 

goes to one).  The MSM is meanwhile handling the reminder tokens.  If at this time the counter has not 

been cleared yet because of its slow clock (i.e. TO-raw is not zero yet) the TSM enters state t6 and waits 

until it does.  When the counter is cleared, the TSM returns to state t1. 

The sixth signal bit is reserved to indicate a software reset.  If such a signal is received and the TSM 

is in any state mentioned so far except t8, the TSM will wait for the SSM to finish sending this reset token 

wave and enter state t3.  From here the TSM uses state t7 to clear the counter as mentioned above with 

state t8.  The TSM then waits for the counter to expire in state t4.  This creates a period of silence after a 

reset wave is sent.  Once the counter expires the TSM moves into t5 where the SW_reset signal is set 

high.  This signal causes the entire FPGA to clear and reboot which of course restarts all state machines 

including the TSM. 

A.8 The Sender State Machine 

The sender state machine (SSM) is responsible for monitoring and driving the placing of an outgoing 

token wave in the output FIFO.  The state machine for the SSM is shown on the next page.  The SSM 

begins in state0 and waits until send_now becomes true.  Send_now becomes true when the MSM needs 

to send a token wave.  The SSM then enters state1 where it enables the signal and barrier registers.  This 

means it takes either the cumulative signal and barrier values as updated by the most recently received 

token wave or it takes the previously saved cumulative signal and barrier values if this is a reminder 

wave.  Using the previous registers was described in Section A.3. 

 The SSM then automatically enters state2 where it clocks both words of the outgoing token into two 

word length registers.  Notice that this requires that all information necessary for the token be ready by 

this time.  If the FIFO is ready then the SSM goes ahead and puts the first word into the FIFO, otherwise 

the SSM enters state3 and waits until the FIFO is ready.  In state4 the count is decremented.  The count 

keeps track of which token in the token wave is being sent (and thus is used to determine the correct 

routing information).  OutputVld is and’ed with the initialization validity bit for this port and then goes to 

the FIFO enable.  The initialization validity bit indicates whether this is an Isotach port and thus whether 

or not tokens should be send out or expected from this port.  The SSM then uses state5 and state6 to put 

the second word of the token into the output FIFO.  If at this point the SSM still has additional ports on 

which to send tokens, it will return to state1.  If the wave is finished, the SSM will enter state7 where 

three things occur.  First, the receiver is cleared as described in Section A.1.  Then, the epoch counter is 

incremented.  Finally, the previous registers are enabled, which saves the signal and barrier information 



sent in this past wave in case it must be resent.  From state6, the SSM automatically returns to state0 

where it resets the count (so that the SSM will begin with the first port on the next wave) and signals the 

MSM that it has finished sending the wave. 
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Appendix B: VHDL and Simulation Script Files 

 

• failure_sm.vhd 

• numreminderwaves.vhd 

• ping_sm.vhd 

• ping_verify.vhd 

• ping_word1_header.vhd 

• valid_buffer_logic.vhd 

• master.vhd 

• inp_valid_sm.vhd 

• psm.vhd 

• tm.do 

• tm_2.vhd 

• tm_ping2.vhd 

• tm_ping.vhd 



-- Christopher Batten
-- cbatten@virginia.edu

-- Created for use in undergraduate thesis:
-- "A Hardware Implementation for Component Failure Handling
-- in Isotach Token Managers"

-- April 2, 1999

-- Failure State Machine
-- Responsible for controlling the valid buffer and setting the
-- set_errsig singal.

LIBRARY MGC_PORTABLE;
USE MGC_PORTABLE.QSIM_LOGIC.ALL;

ENTITY failure_detect_sm IS
PORT (clk : IN QSIM_STATE;

rst : IN QSIM_STATE;
failure_detected : IN QSIM_STATE;
validreset : OUT QSIM_STATE;
clear_counter : OUT QSIM_STATE;
set_errsig : OUT QSIM_STATE );

END failure_detect_sm;

ARCHITECTURE failure_detect_sm_arch OF failure_detect_sm IS
TYPE failure_states IS (f0, f1, f2, f3, f4);
SIGNAL state : failure_states;
SIGNAL next_state : failure_states;

BEGIN

clocked: PROCESS (clk, rst)
BEGIN

IF (rst = '1') THEN
state <= f0;

ELSIF (clk'EVENT AND clk = '1') THEN
state <= next_state;

END IF;
END PROCESS clocked;

output: PROCESS (state)
BEGIN

CASE state IS

-- Init state
WHEN f0 =>

validreset <= '1';
clear_counter <= '1';
set_errsig <= '0';

-- Idle state
WHEN f1 =>

validreset <= '0';
clear_counter <= '0';
set_errsig <= '0';



-- Failure has occured
WHEN f2 =>

validreset <= '0';
clear_counter <= '1';
set_errsig <= '1';

-- Hold set_errsig for 3 cycles
WHEN f3 =>

validreset <= '0';
clear_counter <= '0';
set_errsig <= '1';

-- Hold set_errsig for 3 cycles
WHEN f4 =>

validreset <= '0';
clear_counter <= '0';
set_errsig <= '1';

WHEN OTHERS =>
validreset <= '0';
clear_counter <= '0';
set_errsig <= '0';

END CASE;
END PROCESS output;

state_trans: PROCESS (state, failure_detected)
BEGIN

CASE state IS

WHEN f0 =>
next_state <= f1;

WHEN f1 =>
IF (failure_detected = '1') THEN

next_state <= f2;
ELSE

next_state <= f1;
END IF;

WHEN f2 =>
next_state <= f3;

WHEN f3 =>
next_state <= f4;

WHEN f4 =>
next_state <= f1;

WHEN OTHERS =>
next_state <= f0;

END CASE;
END PROCESS state_trans;

END failure_detect_sm_arch;



-- Christopher Batten
-- cbatten@virginia.edu

-- Created for use in undergraduate thesis:
-- "A Hardware Implementation for Component Failure Handling
-- in Isotach Token Managers"

-- April 2, 1999

-- Hardcoded constant: the failure threshold
-- (The number of reminder waves before a neighbor is declared dead)

LIBRARY MGC_PORTABLE;
USE MGC_PORTABLE.QSIM_LOGIC.ALL;

ENTITY num_reminder_waves IS
PORT (value : OUT QSIM_STATE_VECTOR(7 DOWNTO 0));

END num_reminder_waves;

ARCHITECTURE num_reminder_waves_arch OF num_reminder_waves IS
BEGIN
value <= "00000010";

END num_reminder_waves_arch;



-- Christopher Batten
-- cbatten@virginia.edu

-- Created for use in undergraduate thesis:
-- "A Hardware Implementation for Component Failure Handling
-- in Isotach Token Managers"

-- April 2, 1999

-- Ping handler state machine
-- Responsible for moving return route information from buffers
-- to the output FIFO bus.

LIBRARY MGC_PORTABLE;
USE MGC_PORTABLE.QSIM_LOGIC.ALL;

ENTITY ping_handler_sm IS
PORT (rst : IN QSIM_STATE;

clk : IN QSIM_STATE;
ping_recv : IN QSIM_STATE;
send_ping : IN QSIM_STATE;

fifo_ready : IN QSIM_STATE;
ping_waiting : OUT QSIM_STATE;
ping2fifo_sel : OUT QSIM_STATE;
ping_word_sel : OUT QSIM_STATE;
output_valid : OUT QSIM_STATE );

END ping_handler_sm;

ARCHITECTURE ping_handler_sm_arch OF ping_handler_sm IS
TYPE ping_states IS (p0, p1, p2, p3, p4, p5);
SIGNAL state : ping_states;
SIGNAL next_state : ping_states;

BEGIN
output: PROCESS (state)
BEGIN

CASE state IS
WHEN p0 =>
ping_waiting <= '0';
ping2fifo_sel <= '0';
ping_word_sel <= '0';
output_valid <= '0';

WHEN p1 =>
ping_waiting <= '1';
ping2fifo_sel <= '0';
ping_word_sel <= '0';
output_valid <= '0';

WHEN p2 =>
ping_waiting <= '1';
ping2fifo_sel <= '1';
ping_word_sel <= '0';
output_valid <= '0';



WHEN p3 =>
ping_waiting <= '1';
ping2fifo_sel <= '1';
ping_word_sel <= '0';
output_valid <= '1';

WHEN p4 =>
ping_waiting <= '1';
ping2fifo_sel <= '1';
ping_word_sel <= '1';
output_valid <= '0';

WHEN p5 =>
ping_waiting <= '1';
ping2fifo_sel <= '1';
ping_word_sel <= '1';
output_valid <= '1';

END CASE;
END PROCESS output;

state_trans : PROCESS (state, ping_recv, fifo_ready, send_ping)
BEGIN

CASE state IS

WHEN p0 =>
IF (ping_recv = '1') THEN

next_state <= p1;
ELSE

next_state <= p0;
END IF;

WHEN p1 =>
IF (send_ping = '1' AND fifo_ready = '1') THEN

next_state <= p3;
ELSIF (send_ping = '1' AND fifo_ready = '0') THEN

next_state <= p2;
ELSE

next_state <= p1;
END IF;

WHEN p2 =>
IF (fifo_ready = '1') THEN

next_state <= p3;
ELSE

next_state <= p2;
END IF;

WHEN p3 =>
IF (fifo_ready = '1') THEN

next_state <= p5;
ELSE

next_state <= p4;
END IF;



WHEN p4 =>
IF (fifo_ready = '1') THEN

next_state <= p5;
ELSE

next_state <= p4;
END IF;

WHEN p5 =>
next_state <= p0;

END CASE;
END PROCESS state_trans;

clocked: PROCESS (clk, rst)
BEGIN

IF (rst = '1') THEN
state <= p0;

ELSIF (clk'EVENT AND clk = '1') THEN
state <= next_state;

END IF;
END PROCESS clocked;

END ping_handler_sm_arch;



-- Christopher Batten
-- cbatten@virginia.edu

-- Modified/Created for use in undergraduate thesis:
-- "A Hardware Implementation for Component Failure Handling
-- in Isotach Token Managers"

-- April 2, 1999

-- Ping verifier: Checks first 19 bits of an incomming word to
-- see if it matches the isotach message type identifier.

LIBRARY MGC_PORTABLE;
USE MGC_PORTABLE.QSIM_LOGIC.ALL;

ENTITY ping_verifier IS
PORT (msg_type : IN QSIM_STATE_VECTOR(18 DOWNTO 0);

ping_valid : OUT QSIM_STATE);
END ping_verifier;

ARCHITECTURE ping_verifier_arch OF ping_verifier IS
BEGIN
PROCESS (msg_type)
BEGIN

IF (msg_type = "0000000011000000000") THEN
ping_valid <= '1';

ELSE
ping_valid <= '0';

END IF;
END PROCESS;

END ping_verifier_arch;



-- Christopher Batten
-- cbatten@virginia.edu

-- Modified/Created for use in undergraduate thesis:
-- "A Hardware Implementation for Component Failure Handling
-- in Isotach Token Managers"

-- April 2, 1999

-- Header for the first word of the ping return route:
-- The first word will always be two bytes long and thus we will
-- need to prepend two bytes of zeros. Additionally, we need to set
-- the FI control signals to indicate that only the last two bytes
-- have useful information. According to FI docs this requires
-- the control signals 010 to begin the first word.

LIBRARY MGC_PORTABLE;
USE MGC_PORTABLE.QSIM_LOGIC.ALL;

ENTITY ping_word1_head IS
PORT (ping_word1_header: OUT QSIM_STATE_VECTOR(18 DOWNTO 0));

END ping_word1_head;

ARCHITECTURE ping_word1_head_arch OF ping_word1_head IS
BEGIN
ping_word1_header <= "0100000000000000000";

END ping_word1_head_arch;



-- Christopher Batten
-- cbatten@virginia.edu

-- Modified/Created for use in undergraduate thesis:
-- "A Hardware Implementation for Component Failure Handling
-- in Isotach Token Managers"

-- April 2, 1999

-- Valid buffer logic: Combinational block that sets the
-- valid bits. Allows these bits to be intialized by the
-- initialval and determines if the valid bit should be set
-- to zero based on sendauth.

LIBRARY MGC_PORTABLE;
USE MGC_PORTABLE.QSIM_LOGIC.ALL;

ENTITY valid_buf_logic IS
PORT (laststored : IN QSIM_STATE;

sendauth : IN QSIM_STATE;
initialval : IN QSIM_STATE;
reset : IN QSIM_STATE;
newvalue : OUT QSIM_STATE);

END valid_buf_logic;

ARCHITECTURE valid_buf_logic_arch OF valid_buf_logic IS
BEGIN
PROCESS ( laststored, sendauth, initialval, reset )
BEGIN
if ( reset = '1' ) then

newvalue <= initialval;
else

newvalue <= sendauth AND laststored;
end if;

END PROCESS;
END valid_buf_logic_arch;



-- Token Manager Control Unit: Master State Machine
-- Orginally written by Brian Kuebert
-- Modified by Chris Batten (4/2/99) to add a new state
-- for handling host-to-TM pings

LIBRARY MGC_PORTABLE;
USE MGC_PORTABLE.QSIM_LOGIC.ALL;

ENTITY master IS
PORT (ok_to_send : IN QSIM_STATE;

timeout : IN QSIM_STATE;
send_auth : IN QSIM_STATE_VECTOR(14 DOWNTO 0);
rst : IN QSIM_STATE;
clk : IN QSIM_STATE;
W : IN QSIM_STATE_VECTOR(1 DOWNTO 0);

rec_sig_6 : IN QSIM_STATE;

-- New signal indicates return route info is ready
-- to be move to the output FIFO [CFB 4/2/99]
ping_waiting : IN QSIM_STATE;

sent : OUT QSIM_STATE;
TS_to_send : OUT QSIM_STATE_VECTOR(1 DOWNTO 0);
send_now : OUT QSIM_STATE;
incW : OUT QSIM_STATE;
timeout_reset : OUT QSIM_STATE;
reminder : OUT QSIM_STATE;

-- New signal indicates that the MSM is paused so
-- the PHSM may move the return route info to the
-- output FIFO [CFB 4/2/99]
send_ping : OUT QSIM_STATE;

master_state : OUT QSIM_STATE_VECTOR(2 DOWNTO 0));
END master;

ARCHITECTURE master_arch OF master IS
SIGNAL state : QSIM_STATE_VECTOR(3 DOWNTO 0);
SIGNAL next_state : QSIM_STATE_VECTOR(3 DOWNTO 0);

BEGIN

-- In order not to modify the output pins only the low 3 bits
-- of the state vector are sent to output [CFB]
master_state <= state(2 downto 0);

output: PROCESS (state, W)
BEGIN

CASE state IS
WHEN "0000" => sent <= '0'; -- state m0

TS_to_send <= "XX";
send_now <= '0';
incW <= '0';
timeout_reset <= '0';
reminder <= '0';
send_ping <= '0';



WHEN "0001" => sent <= '0'; -- state m1
CASE W IS

WHEN "00" => TS_to_send <= "00";
WHEN "01" => TS_to_send <= "01";
WHEN "10" => TS_to_send <= "10";
WHEN "11" => TS_to_send <= "11";
WHEN OTHERS => TS_to_send <= "XX";

END CASE;
send_now <= '1';
incW <= '0';
timeout_reset <= '0';
reminder <= '0';
send_ping <= '0';

WHEN "0010" => sent <= '0'; -- state m2
CASE W IS

WHEN "00" => TS_to_send <= "00";
WHEN "01" => TS_to_send <= "01";
WHEN "10" => TS_to_send <= "10";
WHEN "11" => TS_to_send <= "11";
WHEN OTHERS => TS_to_send <= "XX";

END CASE;
send_now <= '0';
incW <= '0';
timeout_reset <= '0';
reminder <= '0';
send_ping <= '0';

WHEN "0011" => sent <= '1'; -- state m3
TS_to_send <= "XX";
send_now <= '0';
incW <= '1';
timeout_reset <= '1';
reminder <= '0';
send_ping <= '0';

WHEN "0100" => sent <= '0'; -- state m4
CASE W IS

WHEN "00" => TS_to_send <= "10";
WHEN "01" => TS_to_send <= "11";
WHEN "10" => TS_to_send <= "00";
WHEN "11" => TS_to_send <= "01";
WHEN OTHERS => TS_to_send <= "XX";

END CASE;
send_now <= '1';
incW <= '0';
timeout_reset <= '0';
reminder <= '1';
send_ping <= '0';



WHEN "0101" => sent <= '0'; -- state m5
CASE W IS

WHEN "00" => TS_to_send <= "10";
WHEN "01" => TS_to_send <= "11";
WHEN "10" => TS_to_send <= "00";
WHEN "11" => TS_to_send <= "01";
WHEN OTHERS => TS_to_send <= "XX";

END CASE;
send_now <= '0';
incW <= '0';
timeout_reset <= '0';
reminder <= '1';
send_ping <= '0';

WHEN "0110" => sent <= '0'; -- state m6
CASE W IS

WHEN "00" => TS_to_send <= "11";
WHEN "01" => TS_to_send <= "00";
WHEN "10" => TS_to_send <= "01";
WHEN "11" => TS_to_send <= "10";
WHEN OTHERS => TS_to_send <= "XX";

END CASE;
send_now <= '1';
incW <= '0';
timeout_reset <= '1';
reminder <= '1';
send_ping <= '0';

WHEN "0111" => sent <= '0'; -- state m7
CASE W IS

WHEN "00" => TS_to_send <= "11";
WHEN "01" => TS_to_send <= "00";
WHEN "10" => TS_to_send <= "01";
WHEN "11" => TS_to_send <= "10";
WHEN OTHERS => TS_to_send <= "XX";

END CASE;
send_now <= '0';
incW <= '0';
timeout_reset <= '0';
reminder <= '1';
send_ping <= '0';

-- New state for waiting until a ping has finished
WHEN "1000" => sent <= '0'; -- state m8

TS_to_send <= "XX";
send_now <= '0';
incW <= '0';
timeout_reset <= '0';
reminder <= '0';
send_ping <= '1';



WHEN OTHERS => sent <= 'X';
TS_to_send <= "XX";
send_now <= 'X';
incW <= 'X';
timeout_reset <= 'X';
reminder <= 'X';
send_ping <= 'X';

END CASE;
END PROCESS output;

state_trans : PROCESS (ok_to_send, timeout, send_auth, state,
rec_sig_6, ping_waiting)

BEGIN
CASE state IS

WHEN "0000" => -- state m0
IF ((ok_to_send = '1' AND send_auth = "111111111111111")

OR (rec_sig_6 = '1')) THEN
next_state <= "0001"; --M1

ELSIF (ok_to_send = '1' AND timeout = '1') THEN
next_state <= "0100"; --M4

ELSIF (ping_waiting = '1') THEN
next_state <= "1000";

ELSE
next_state <= "0000"; --M0

END IF;

WHEN "0001" => -- state m1
next_state <= "0010"; --M2

WHEN "0010" => -- state m2
IF (ok_to_send = '1') THEN

next_state <= "0011"; --M3
ELSE

next_state <= "0010"; --M2
END IF;

WHEN "0011" => -- state m3
next_state <= "0000"; --M0

WHEN "0100" => -- state m4
next_state <= "0101"; --M5

WHEN "0101" => -- state m5
IF (ok_to_send = '1') THEN

next_state <= "0110"; --M6
ELSE

next_state <= "0101"; --M5
END IF;

WHEN "0110" => -- state m6
next_state <= "0111"; --M7



WHEN "0111" => -- state m7
IF (ok_to_send = '1') THEN

next_state <= "0000"; --M0
ELSE

next_state <= "0111"; --M7
END IF;

-- Wait in state m8 until finished sending ping
WHEN "1000" => -- state m8

IF (ping_waiting = '0') THEN
next_state <= "0000";

ELSE
next_state <= "1000";

END IF;

WHEN OTHERS =>
next_state <= "0000";

END CASE;
END PROCESS state_trans;

clocked: PROCESS (clk, rst)
BEGIN

IF (rst = '1') THEN
state <= "0000";

ELSIF (clk'EVENT AND clk = '1') THEN
state <= next_state;

END IF;
END PROCESS clocked;

END master_arch;



-- Brian D. Kuebert
-- modified 8/04/98 by AWS to bring out state bit - add in_valid input
-- modified 3/15/99 by CFB to add additional state for host-to-TM
-- ping handling

LIBRARY MGC_PORTABLE;
USE MGC_PORTABLE.QSIM_LOGIC.ALL;

ENTITY inp_valid_sm IS
PORT (clk : IN QSIM_STATE;

rst : IN QSIM_STATE;
buff_en : IN QSIM_STATE;
verify : IN QSIM_STATE;
ping_valid : IN QSIM_STATE;
in_valid : IN QSIM_STATE;
ping_recv : OUT QSIM_STATE;
inp_valid_state : OUT QSIM_STATE;
inp_valid : OUT QSIM_STATE);

END inp_valid_sm;

ARCHITECTURE inp_valid_sm_arch OF inp_valid_sm IS
SIGNAL state : QSIM_STATE_VECTOR( 1 downto 0 );
SIGNAL next_state: QSIM_STATE_VECTOR( 1 downto 0 );

BEGIN
clocked: PROCESS (clk, rst)
BEGIN

IF (rst = '1') THEN
state <= "00";

ELSIF (clk'EVENT AND clk = '1') THEN
state <= next_state;

-- In order to avoid modifying the output pins, we do not
-- use two pins to output the inp_valid_state. [CFB 3/15/99]
inp_valid_state <= next_state(0);

END IF;
END PROCESS clocked;

output: PROCESS (state, verify)
BEGIN

CASE state IS

WHEN "00" =>
ping_recv <= '0';
inp_valid <= '0';

WHEN "01" =>
ping_recv <= '0';
IF (verify = '1') THEN

inp_valid <= '1';
ELSE

inp_valid <= '0';
END IF;



-- New state to handle host-to-TM pings [CFB 4/2/99]
WHEN "11" =>

ping_recv <= '1';
inp_valid <= '0';

WHEN OTHERS =>
ping_recv <= 'X';
inp_valid <= 'X';

END CASE;
END PROCESS output;

state_trans: PROCESS (state, buff_en, in_valid, ping_valid)
BEGIN

CASE state IS

WHEN "00" =>
IF (buff_en = '1') THEN

next_state <= "01";
ELSIF (ping_valid = '1') THEN

next_state <= "11";
ELSE

next_state <= "00";
END IF;

WHEN "01" =>
IF (in_valid = '1') THEN

next_state <= "00";
ELSE

next_state <= "01";
END IF;

WHEN "11" =>
IF (in_valid = '1') THEN

next_state <= "00";
ELSE

next_state <= "11";
END IF;

WHEN OTHERS =>
next_state <= "00";

END CASE;
END PROCESS state_trans;

END inp_valid_sm_arch;



-- Token Manager Control Unit: Port State Machine
-- Created by Brian Kuebert
-- Modified by Chris Batten [4/2/99]
-- Added faildetect signal to allow the failure state machine
-- to push a PSM into state s1.

LIBRARY MGC_PORTABLE;
USE MGC_PORTABLE.QSIM_LOGIC.ALL;

ENTITY psm IS
PORT (rst : IN QSIM_STATE;

clk : IN QSIM_STATE;
sent : IN QSIM_STATE;
got00 : IN QSIM_STATE;
got01 : IN QSIM_STATE;
got10 : IN QSIM_STATE;
got11 : IN QSIM_STATE;

-- New signal that is high when failure has been detected [CFB]
faildetect : IN QSIM_STATE;

W : IN QSIM_STATE_VECTOR(1 DOWNTO 0);
send_auth : OUT QSIM_STATE);

END psm;

ARCHITECTURE psm_arch OF psm IS
TYPE psm_states IS (s0, s1);
SIGNAL state : psm_states;
SIGNAL next_state : psm_states;

BEGIN

output: PROCESS (state)
BEGIN

CASE state IS
WHEN s0 => send_auth <= '1';
WHEN s1 => send_auth <= '0';

END CASE;
END PROCESS output;

state_trans : PROCESS (sent, got00, got01, got10, got11, state,
faildetect, W)

BEGIN
CASE state IS

WHEN s0 =>
IF (sent = '1') THEN
next_state <= s1;

ELSE
next_state <= s0;

END IF;



WHEN s1 =>

-- if failure detected move back into ready state
IF ( faildetect = '1' ) THEN
next_state <= s0;

ELSE

IF (W = "00" AND got11 = '1') THEN
next_state <= s0;

ELSIF (W = "01" AND got00 = '1') THEN
next_state <= s0;

ELSIF (W = "10" AND got01 = '1') THEN
next_state <= s0;

ELSIF (W = "11" AND got10 = '1') THEN
next_state <= s0;

ELSE next_state <= s1;

END IF;

END IF;
END CASE;

END PROCESS state_trans;

clocked: PROCESS (clk, rst)
BEGIN

IF (rst = '1') THEN
state <= s0;

ELSIF (clk'EVENT AND clk = '1') THEN
state <= next_state;

END IF;
END PROCESS clocked;

END psm_arch;



## Christopher Batten
## cbatten@virginia.edu
## tm.do

## Modified/Created for use in undergraduate thesis:
## "A Hardware Implementation for Component Failure Handling
## in Isotach Token Managers"

## April 2, 1999

## Corresponds to Figure 6-3 in text

restart -force -nowave

wave /clk
wave /from_fifo
wave /to_fifo

wave /failure_threshold/value
wave /failure_sm/clear_counter
wave /failure_sm/set_errsig
wave /failuredetected
wave /valid
wave /valid_buf/Q
wave /master_sm/send_auth
wave /epoch_length
wave /epoch_counter/count
wave /epoch_boundary

wave /master_sm/state
wave /failure_sm/state
wave /sender_state
wave /timer_sm/state
wave /timer_sm/timeout
wave /failure_counter/count
wave /timer_sm/counter_clk
wave /sig_buf/Q

force -freeze /route 100001
force -freeze /epoch_length 00000100
force -freeze /scale 00000010
force -freeze /small_or_big 1
force -freeze /tm_or_siu 000000000000001
force -freeze /valid 000000001110111

force -freeze /rst 1
force -freeze /rst 0 5
force -freeze /toggle_button 0
force -freeze /clk 0 -repeat 20
force -freeze /clk 1 10 -repeat 20
force -freeze /in_valid 0
force -freeze /from_fifo 00000000000000000000000000000000000
force -freeze /fifo_rdy 1
force -freeze /toggle_button 1 500
force -freeze /toggle_button 0 510
force -freeze /in_valid 1 565



## Send token wave - missing one token ...

# | | | | ##123456| |
force -freeze /from_fifo 00000000110000000010000000100000000 565
force -freeze /from_fifo 11100000000000000000000000000000000 585

force -freeze /from_fifo 00000000110000000010000001000000000 605
force -freeze /from_fifo 11100000000000000000000000000000000 625

force -freeze /from_fifo 00000000110000000010000010100000000 645
force -freeze /from_fifo 11100000000000000000000000000000000 665

force -freeze /from_fifo 00000000110000000010000011000000000 685
force -freeze /from_fifo 11100000000000000000000000000000000 705

force -freeze /from_fifo 00000000110000000010000011100000000 725
force -freeze /from_fifo 11100000000000000000000000000000000 745

## Another wave ...

force -freeze /from_fifo 00000000110000000010100000100000000 81944
force -freeze /from_fifo 11100000000000000000000000000000000 81964

force -freeze /from_fifo 00000000110000000010100001000000000 81984
force -freeze /from_fifo 11100000000000000000000000000000000 82004

# This token has err_clr signal set
force -freeze /from_fifo 00000000110000000010100010100100000 82024
force -freeze /from_fifo 11100000000000000000000000000000000 82044

force -freeze /from_fifo 00000000110000000010100011000000000 82064
force -freeze /from_fifo 11100000000000000000000000000000000 82084

force -freeze /from_fifo 00000000110000000010100011100000000 82104
force -freeze /from_fifo 11100000000000000000000000000000000 82124

## One more wave to let the epoch run out ...
force -freeze /from_fifo 00000000110000000011000000100000000 100944
force -freeze /from_fifo 11100000000000000000000000000000000 100964

force -freeze /from_fifo 00000000110000000011000001000000000 100984
force -freeze /from_fifo 11100000000000000000000000000000000 101004

force -freeze /from_fifo 00000000110000000011000010100000000 101024
force -freeze /from_fifo 11100000000000000000000000000000000 101044

force -freeze /from_fifo 00000000110000000011000011000000000 101064
force -freeze /from_fifo 11100000000000000000000000000000000 101084

force -freeze /from_fifo 00000000110000000011000011100000000 101104
force -freeze /from_fifo 11100000000000000000000000000000000 101124

## And finally one more wave to see the err_clr reset
force -freeze /from_fifo 00000000110000000011100000100000000 120944
force -freeze /from_fifo 11100000000000000000000000000000000 120964



force -freeze /from_fifo 00000000110000000011100001000000000 120984
force -freeze /from_fifo 11100000000000000000000000000000000 121004

force -freeze /from_fifo 00000000110000000011100010100000000 121024
force -freeze /from_fifo 11100000000000000000000000000000000 121044

force -freeze /from_fifo 00000000110000000011100011000000000 121064
force -freeze /from_fifo 11100000000000000000000000000000000 121084

force -freeze /from_fifo 00000000110000000011100011100000000 121104
force -freeze /from_fifo 11100000000000000000000000000000000 121124

run 140000



## Christopher Batten
## cbatten@virginia.edu
## tm_2.do

## Modified/Created for use in undergraduate thesis:
## "A Hardware Implementation for Component Failure Handling
## in Isotach Token Managers"

## April 2, 1999

## Corresponds to Figure 6-5 in text

restart -force -nowave

wave /clk
wave /from_fifo
wave /to_fifo

wave /failure_threshold/value
wave /failure_sm/clear_counter
wave /failure_sm/set_errsig
wave /failuredetected
wave /valid
wave /valid_buf/Q
wave /master_sm/send_auth
wave /epoch_length
wave /epoch_counter/count
wave /epoch_boundary

wave /master_sm/state
wave /failure_sm/state
wave /sender_state
wave /timer_sm/state
wave /timer_sm/timeout
wave /failure_counter/count
wave /timer_sm/counter_clk
wave /sig_buf/Q

force -freeze /route 100001
force -freeze /epoch_length 00000011
force -freeze /scale 00000010
force -freeze /small_or_big 1
force -freeze /tm_or_siu 000000000000001
force -freeze /valid 000000001110111

force -freeze /rst 1
force -freeze /rst 0 5
force -freeze /toggle_button 0
force -freeze /clk 0 -repeat 20
force -freeze /clk 1 10 -repeat 20
force -freeze /in_valid 0
force -freeze /from_fifo 00000000000000000000000000000000000
force -freeze /fifo_rdy 1
force -freeze /toggle_button 1 500
force -freeze /toggle_button 0 510
force -freeze /in_valid 1 565



## Send token wave - missing one token ...

# | | | | ##123456| |
force -freeze /from_fifo 00000000110000000010000000100000000 565
force -freeze /from_fifo 11100000000000000000000000000000000 585

force -freeze /from_fifo 00000000110000000010000001000000000 605
force -freeze /from_fifo 11100000000000000000000000000000000 625

force -freeze /from_fifo 00000000110000000010000010100000000 645
force -freeze /from_fifo 11100000000000000000000000000000000 665

force -freeze /from_fifo 00000000110000000010000011000000000 685
force -freeze /from_fifo 11100000000000000000000000000000000 705

force -freeze /from_fifo 00000000110000000010000011100000000 725
force -freeze /from_fifo 11100000000000000000000000000000000 745

## Another wave ...

force -freeze /from_fifo 00000000110000000010100000100000000 81944
force -freeze /from_fifo 11100000000000000000000000000000000 81964

force -freeze /from_fifo 00000000110000000010100001000000000 81984
force -freeze /from_fifo 11100000000000000000000000000000000 82004

force -freeze /from_fifo 00000000110000000010100010100000000 82024
force -freeze /from_fifo 11100000000000000000000000000000000 82044

force -freeze /from_fifo 00000000110000000010100011000000000 82064
force -freeze /from_fifo 11100000000000000000000000000000000 82084

force -freeze /from_fifo 00000000110000000010100011100000000 82104
force -freeze /from_fifo 11100000000000000000000000000000000 82124

## One more wave to let the epoch run out ...
force -freeze /from_fifo 00000000110000000011000000100000000 100944
force -freeze /from_fifo 11100000000000000000000000000000000 100964

force -freeze /from_fifo 00000000110000000011000001000000000 100984
force -freeze /from_fifo 11100000000000000000000000000000000 101004

force -freeze /from_fifo 00000000110000000011000010100000000 101024
force -freeze /from_fifo 11100000000000000000000000000000000 101044

force -freeze /from_fifo 00000000110000000011000011000000000 101064
force -freeze /from_fifo 11100000000000000000000000000000000 101084

force -freeze /from_fifo 00000000110000000011000011100000000 101104
force -freeze /from_fifo 11100000000000000000000000000000000 101124

## And finally one more wave ...
force -freeze /from_fifo 00000000110000000011100000100000000 120944
force -freeze /from_fifo 11100000000000000000000000000000000 120964



force -freeze /from_fifo 00000000110000000011100001000000000 120984
force -freeze /from_fifo 11100000000000000000000000000000000 121004

force -freeze /from_fifo 00000000110000000011100010100000000 121024
force -freeze /from_fifo 11100000000000000000000000000000000 121044

force -freeze /from_fifo 00000000110000000011100011000000000 121064
force -freeze /from_fifo 11100000000000000000000000000000000 121084

force -freeze /from_fifo 00000000110000000011100011100000000 121104
force -freeze /from_fifo 11100000000000000000000000000000000 121124

run 140000



## Christopher Batten
## cbatten@virginia.edu
## tm_ping2.do

## Modified/Created for use in undergraduate thesis:
## "A Hardware Implementation for Component Failure Handling
## in Isotach Token Managers"

## April 2, 1999

## Corresponds to Figure 6-6 in text

restart -force -nowave

wave /clk
wave /rst
wave /fifo_rdy
wave /output_valid
wave /to_fifo
wave /in_valid
wave /from_fifo

## State Machines
wave /master_sm/state
wave /sender_state
wave /inp_valid_sm/state
wave /ping_sm/state

## Ping variables
wave /ping_verifier/ping_valid
wave /master_sm/send_ping
wave /ping_sm/ping_waiting
wave /ping_sm/ping_word_sel
wave /ping_sm/ping2fifo_sel

## Return route buffer outputs
wave /return_route_word1/Q
wave /return_route_word2/Q

force -freeze /route 100001
force -freeze /epoch_length 11111111
force -freeze /scale 00000010
force -freeze /small_or_big 1
force -freeze /tm_or_siu 000000000000001
force -freeze /valid 000000001110111

force -freeze /rst 1
force -freeze /rst 0 5
force -freeze /toggle_button 0
force -freeze /clk 0 -repeat 20
force -freeze /clk 1 10 -repeat 20
force -freeze /in_valid 0
force -freeze /from_fifo 00000000000000000000000000000000000
force -freeze /fifo_rdy 1

force -freeze /toggle_button 1 500



force -freeze /toggle_button 0 510
force -freeze /in_valid 1 565

## Host-to-TM ping
# FI -- PingTypeID --
# | | | | | | | |
force -freeze /from_fifo 00000000110000000000110011001100110 600
force -freeze /from_fifo 00001100110011001100110011001100110 620

run 1000



## Christopher Batten
## cbatten@virginia.edu
## tm_ping.do

## Modified/Created for use in undergraduate thesis:
## "A Hardware Implementation for Component Failure Handling
## in Isotach Token Managers"

## April 2, 1999

## Corresponds to Figure 6-7 in text

restart -force -nowave

wave /clk
wave /rst
wave /fifo_rdy
wave /output_valid
wave /to_fifo
wave /in_valid
wave /from_fifo

## State Machines
wave /master_sm/state
wave /sender_state
wave /inp_valid_sm/state
wave /ping_sm/state

## Ping variables
wave /ping_verifier/ping_valid
wave /master_sm/send_ping
wave /ping_sm/ping_waiting
wave /ping_sm/ping_word_sel
wave /ping_sm/ping2fifo_sel

## Return route buffer outputs
wave /return_route_word1/Q
wave /return_route_word2/Q

force -freeze /route 100001
force -freeze /epoch_length 11111111
force -freeze /scale 00000010
force -freeze /small_or_big 1
force -freeze /tm_or_siu 000000000000001
force -freeze /valid 000000001110111

force -freeze /rst 1
force -freeze /rst 0 5
force -freeze /toggle_button 0
force -freeze /clk 0 -repeat 20
force -freeze /clk 1 10 -repeat 20
force -freeze /in_valid 0
force -freeze /from_fifo 00000000000000000000000000000000000
force -freeze /fifo_rdy 1

force -freeze /toggle_button 1 500



force -freeze /toggle_button 0 510
force -freeze /in_valid 1 565

## Normal token wave
# | | | | ##123456| |
force -freeze /from_fifo 00000000110000000010000000100000000 565
force -freeze /from_fifo 11100000000000000000000000000000000 585

force -freeze /from_fifo 00000000110000000010000001000000000 605
force -freeze /from_fifo 11100000000000000000000000000000000 625

force -freeze /from_fifo 00000000110000000010000010100000000 645
force -freeze /from_fifo 11100000000000000000000000000000000 665

force -freeze /from_fifo 00000000110000000010000011000000000 685
force -freeze /from_fifo 11100000000000000000000000000000000 705

force -freeze /from_fifo 00000000110000000010000011100000000 725
force -freeze /from_fifo 11100000000000000000000000000000000 745

force -freeze /from_fifo 00000000110000000010000001100000000 765
force -freeze /from_fifo 11100000000000000000000000000000000 785

## Host-to-TM ping
# FI -- PingTypeID --
# | | | | | | | |
force -freeze /from_fifo 00000000110000000000110011001100110 1000
force -freeze /from_fifo 00001100110011001100110011001100110 1020

run 2000
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