Celerity: An Open Source RISC-V Tiered Accelerator Fabric

Tutu Ajayi[‡], Khalid Al-Hawaj[†], Aporva Amarnath[‡], Steve Dai[†], Scott Davidson^{*}, Paul Gao^{*}, Gai Liu[†], Atieh Lotfi^{*}, Julian Puscar^{*}, Anuj Rao^{*}, Austin Rovinski[‡], Loai Salem^{*}, Ningxiao Sun^{*}, Christopher Torng[†], Luis Vega^{*}, Bandhav Veluri^{*}, Xiaoyang Wang^{*}, Shaolin Xie^{*}, Chun Zhao^{*}, Ritchie Zhao[†],

Christopher Batten[†], Ronald G. Dreslinski[‡], Ian Galton*, Rajesh K. Gupta*, Patrick P. Mercier*, Mani Srivastava[§], Michael B. Taylor*, Zhiru Zhang[†]

* University of California, San Diego

† Cornell University

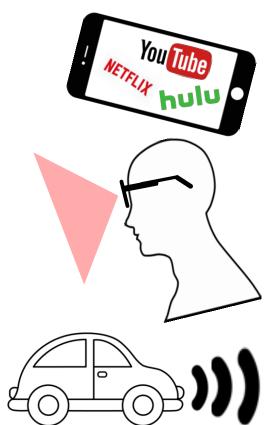
‡ University of Michigan

§ University of California, Los Angeles

Hot Chips 29 August 21, 2017

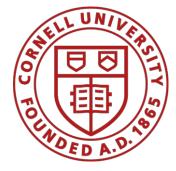
High-Performance Embedded Computing

- Embedded workloads are abundant and evolving
 - Video decoding on mobile devices
 - Increasing bitrates, new emerging codecs
 - Machine learning (speech recognition, text prediction, ...)
 - Algorithm changes for better accuracy and energy performance
 - Wearable and mobile augmented reality
 - Still new, rapidly changing models and algorithms
 - Real-time computer vision for autonomous vehicles
 - Faster decision making, better image recognition
- We are in the post-Dennard scaling era
 - Cost of energy > Cost of area
- How do we attain extreme energy-efficiency while also maintaining flexibility for evolving workloads?



Celerity: Chip Overview

- TSMC 16nm FFC
- 25mm² die area (5mm x 5mm)
- ~385 million transistors
- 511 RISC-V cores
 - 5 Linux-capable "Rocket Cores"
 - 496-core mesh tiled array "Manycore"
 - 10-core mesh tiled array "Manycore" (low voltage)
- 1 Binarized Neural Network Specialized Accelerator
- On-chip synthesizable PLLs and DC/DC LDO
 - Developed in-house
- 3 Clock domains
 - 400 MHz DDR I/O
 - 625 MHz Rocket core + Specialized accelerator
 - 1.05 GHz Manycore array
- 672-pin flip chip BGA package
- · 9-months from PDK access to tape-out



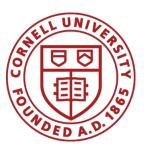
Celerity Overview

Tiered Accelerator Fabric

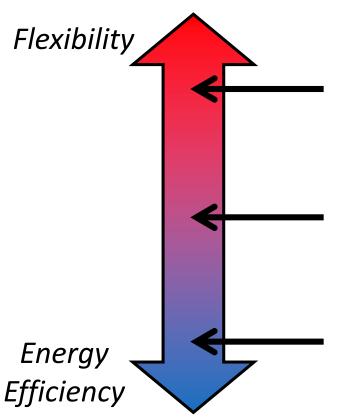
Case Study: Mapping Flexible Image Recognition to a Tiered Accelerator Fabric

Meeting Aggressive Time Schedule

Conclusion



Decomposition of Embedded Workloads



- General-purpose computation
- Operating systems, I/O, etc.

- Flexible and energy-efficient
- Exploits coarse- and fine-grain parallelism

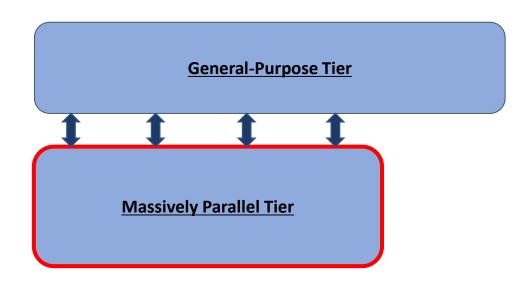
- Fixed-function
- Extremely strict energy efficiency requirements

An architectural template that maps embedded workloads onto distinct tiers to maximize energy efficiency while maintaining flexibility.

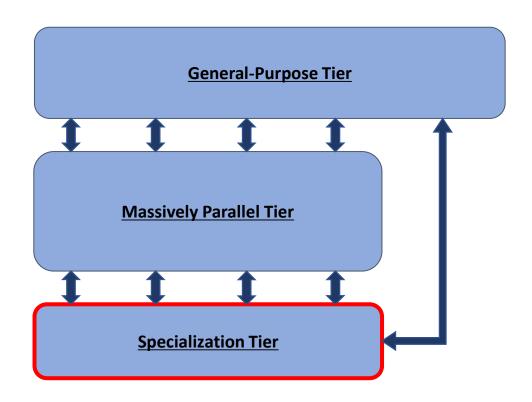
General-Purpose Tier

General-purpose computation, control flow and memory management

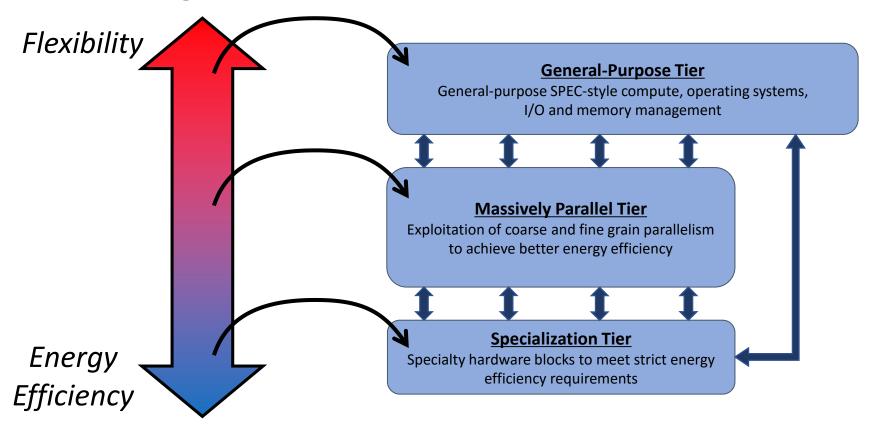
Flexible exploitation of coarse and fine grain parallelism



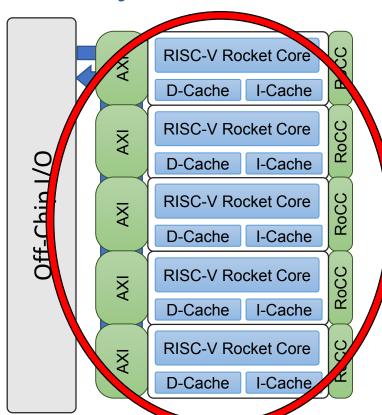
Fixed-function
specialized accelerators
for energy efficiency
requirements



Mapping Workloads onto Tiers

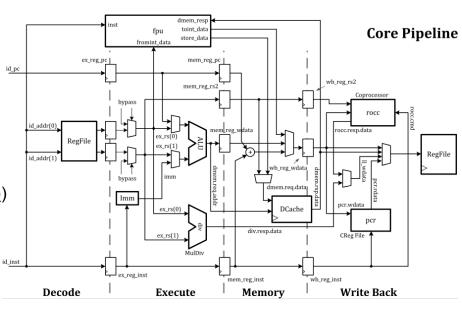


Celerity: General-Purpose Tier

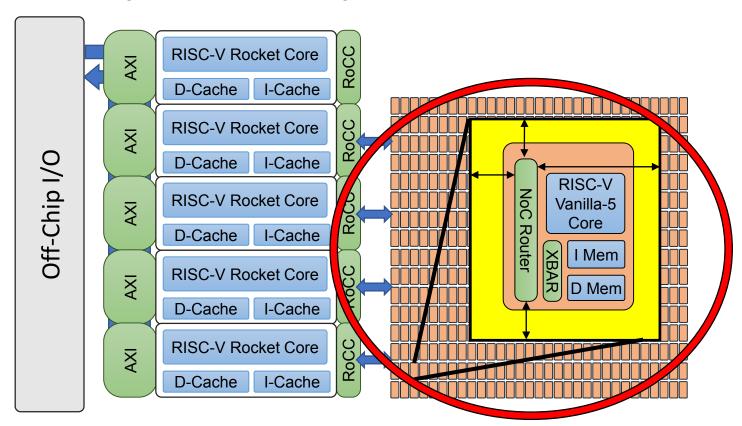


General-Purpose Tier: RISC-V Rocket Cores

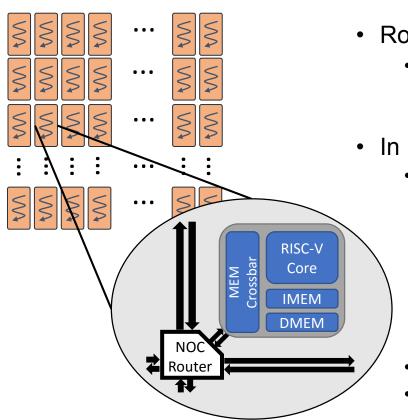
- Role of the General-Purpose Tier
 - General-purpose SPEC-style compute
 - Exception handling
 - Operating system (e.g. TCP/IP Stack)
 - Cached memory hierarchy for all tiers
- In Celerity
 - 5 Rocket Cores, generated from Chisel (https://github.com/freechipsproject/rocket-chip)
 - 5-stage, in-order, scalar processor
 - Double-precision floating point
 - I-Cache: 16KB 4-way assoc.
 - D-Cache: 16KB 4-way assoc.
 - RV64G ISA
 - 0.97 mm² per Rocket core @ 625 MHz



Celerity: Massively Parallel Tier



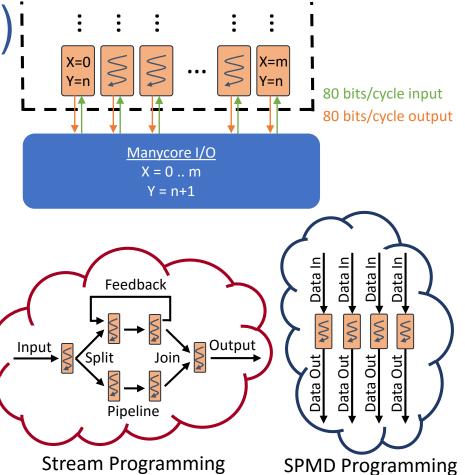
Massively Parallel Tier: Manycore Array



- Role of the Massively Parallel Tier
 - Flexibility and improved energy efficiency over the general-purpose tier by massively exploiting parallelism
- In Celerity
 - 496 low power RISC-V Vanilla-5 cores
 - 5-stage, in-order, scalar cores
 - · Fully distributed memory model
 - 4KB instruction memory per tile
 - 4KB data memory per tile
 - RV32IM ISA
 - 16x31 tiled mesh array
 - Open source!
 - 80 Gbps full duplex links between each adjacent tile
 - 0.024mm² per tile @ 1.05 GHz

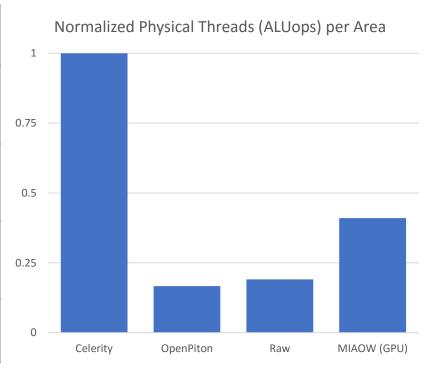
Manycore Array (Cont.):

- XY-dimension network-on-chip (NoC)
 - Unlimited deadlock-free communication
 - Manycore I/O uses same network
- Remote store programming model
 - Word writes into other tile's data memory
 - MIMD programming model
 - Fine-grain parallelism through high-speed communication between tiles
- Token-Queue architectural primitive
 - Reserves buffer space in remote core
 - Ensures buffer is filled before accessed
 - Tight producer-consumer synchronization
 - Streaming programming model
 - Producer-consumer parallelism

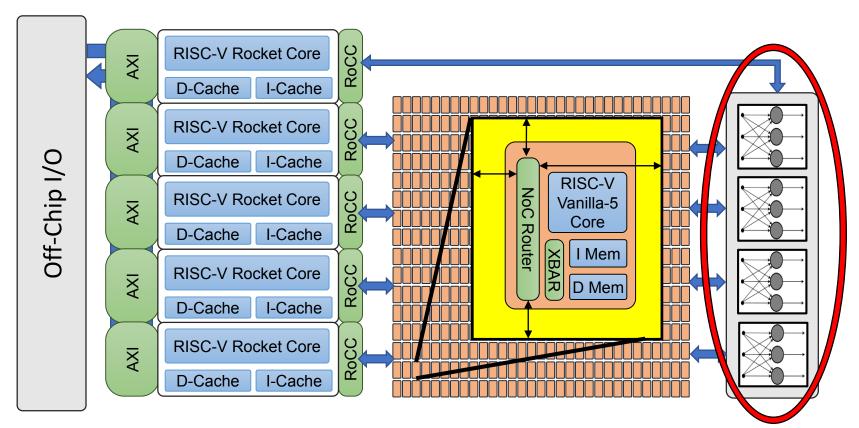


Manycore Array (Cont.)

	Configuration	Normalized Area (32nm)	Area Ratio
Celerity Tile @16nm	D-MEM = 4KB I-MEM = 4KB	0.024 * (32/16) ² = 0.096 mm ²	1x
OpenPiton Tile @32nm	L1 D-Cache = 8KB L1 I-Cache = 8KB L1.5/L2 Cache = 40KB	1.17 mm ² [1]	12x
Raw Tile @180nm	L1 D-Cache = 32KB L1 I-SRAM = 96KB	16.0 * (32/180) ² = 0.506 mm ²	5.25x
MIAOW GPU Compute Unit Lane @32nm	VRF = 256KB SRF = 2KB	15.0 / 16 = 0.938 mm ² [2]	9.75x



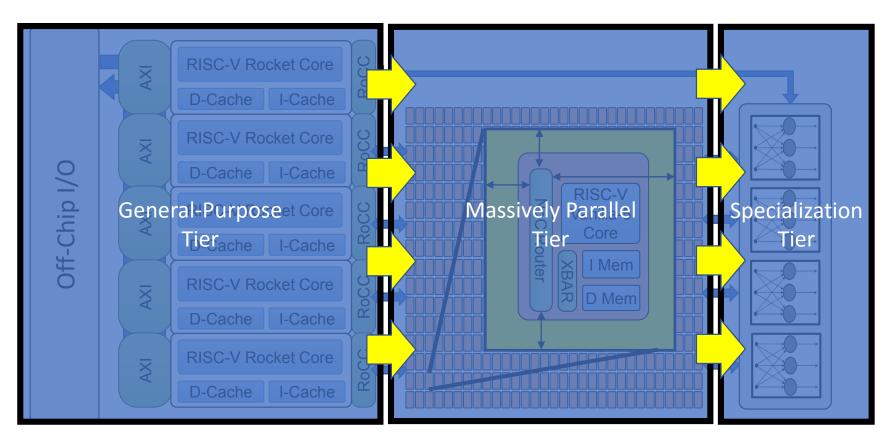
Celerity: Specialization Tier



Specialization Tier: Binarized Neural Network

- Role of the Specialization Tier
 - Achieves high energy efficiency through specialization
- In Celerity
 - Binarized Neural Network (BNN)
 - Energy-efficient convolutional neural network implementation
 - 13.4 MB model size with 9 total layers
 - 1 Fixed-point convolutional layer
 - · 6 Binary convolutional layers
 - 2 Dense fully connected layers
 - Batch norm calculations done after each layer
 - 0.356 mm² @ 625 MHz

Parallel Links Between Tiers



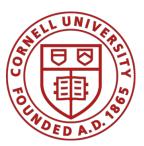
Celerity Overview

Tiered Accelerator Fabric

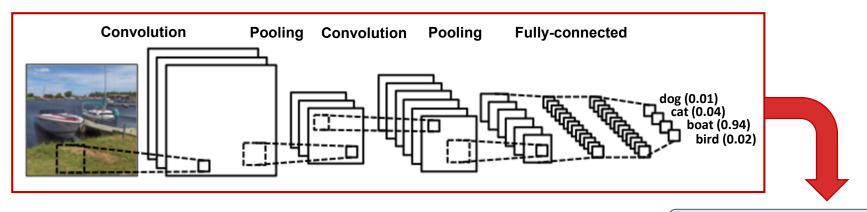
Case Study: Mapping Flexible Image Recognition to a Tiered Accelerator Fabric

Meeting Aggressive Time Schedule

Conclusion

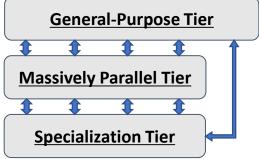


Case Study: Mapping Flexible Image Recognition to a Tiered Accelerator Fabric

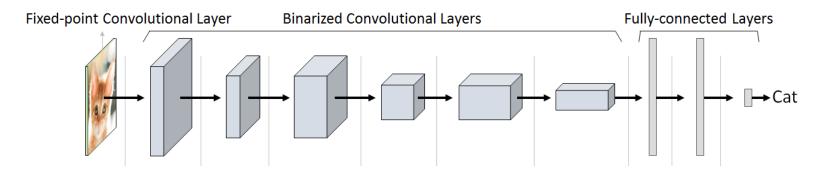


Three steps to map applications to tiered accelerator fabric:

- Step 1. Implement the algorithm using the general-purpose tier
- Step 2. Accelerate the algorithm using either the massively parallel tier **OR** the specialization tier
- Step 3. Improve performance by cooperatively using both the specialization **AND** the massively parallel tier

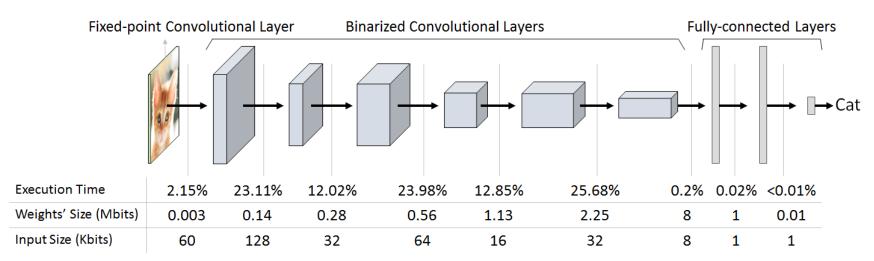


Step 1: Algorithm to Application **Binarized Neural Networks**

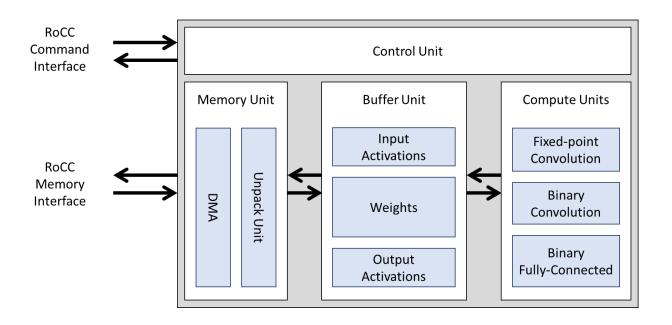


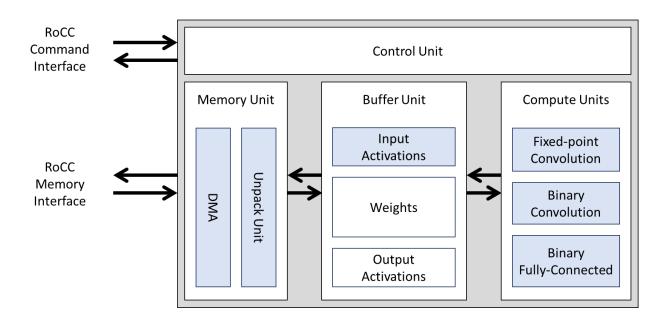
- Training usually uses floating point, while inference usually uses lower precision weights and activations (often 8-bit or lower) to reduce implementation complexity
- Rastergari et al. [3] and Courbariaux et al. [4] have recently shown single-bit precision weights and activations can achieve an accuracy of 89.8% on CIFAR-10
- Performance target requires ultra-low latency (batch size of one) and high throughput (60 classifications/second)

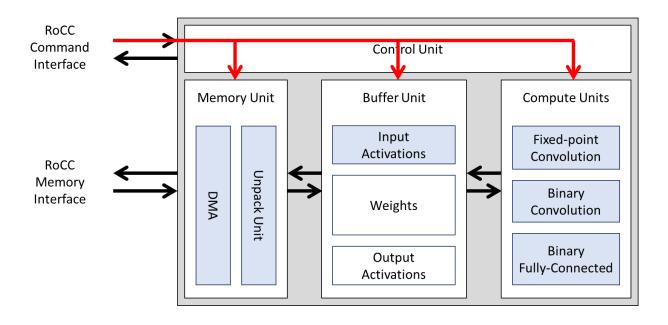
Step 1: Algorithm to Application Characterizing BNN Execution



- Using just the general-purpose tier is 200x slower than performance target
- Binarized convolutional layers consume over 97% of dynamic instruction count
- Perfect acceleration of just the binarized convolutional layers is still 5x slower than performance target
- Perfect acceleration of all layers using the massively parallel tier could meet performance target but with significant energy consumption

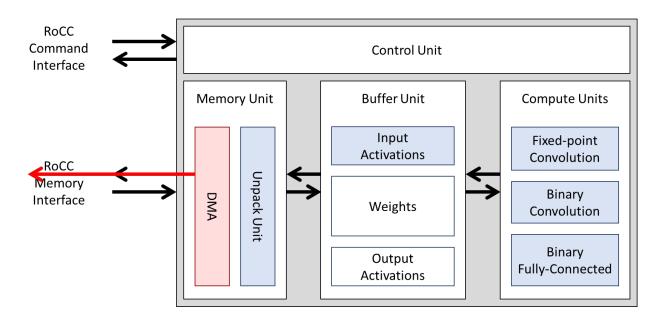




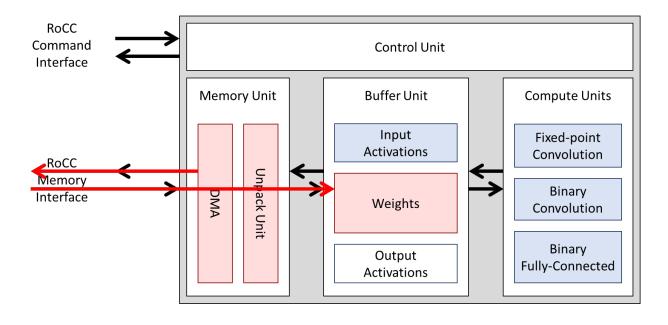


 Accelerator is configured to process a layer through RoCC command messages

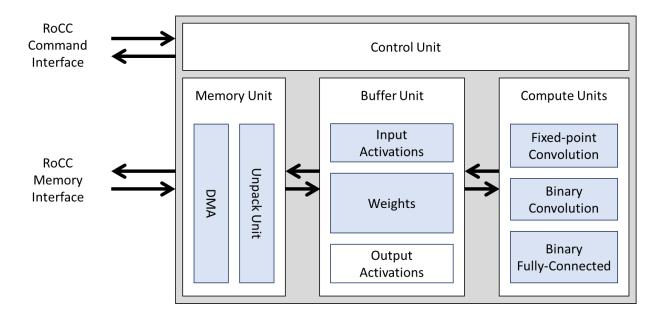
BNN Specialized Accelerator



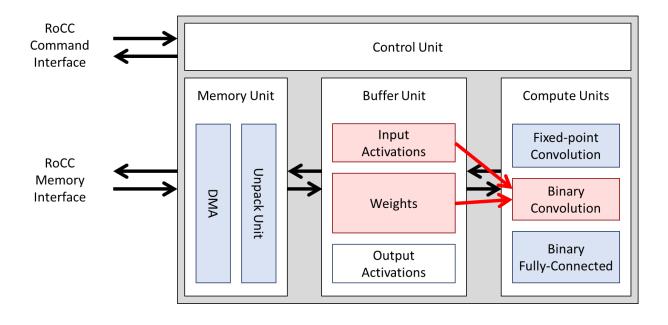
- Accelerator is configured to process a layer through RoCC command messages
- Memory Unit starts streaming the weights into the accelerator and unpacking the binarized weights into appropriate buffers



- Accelerator is configured to process a layer through RoCC command messages
- Memory Unit starts streaming the weights into the accelerator and unpacking the binarized weights into appropriate buffers

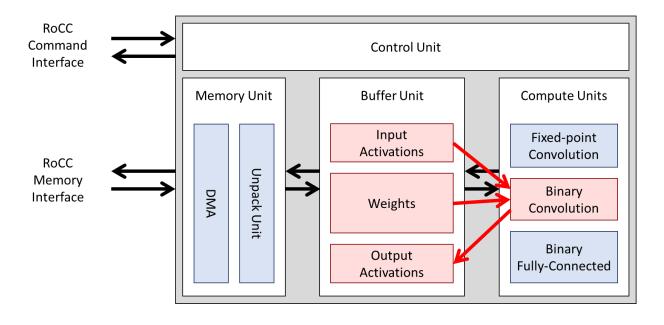


- Accelerator is configured to process a layer through RoCC command messages
- 2. Memory Unit starts streaming the weights into the accelerator and unpacking the binarized weights into appropriate buffers

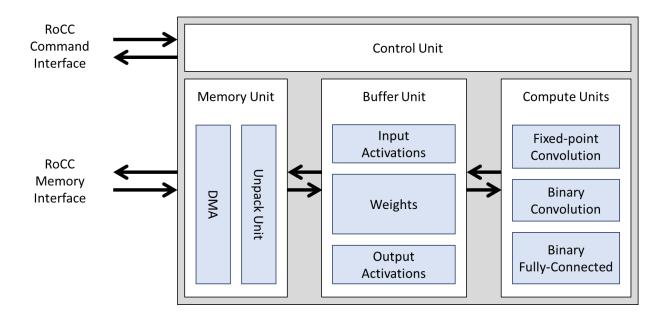


- Accelerator is configured to process a layer through RoCC command messages
- Memory Unit starts streaming the weights into the accelerator and unpacking the binarized weights into appropriate buffers
- 3. Binary convolution compute unit processes input activations and weights to produce output activations

BNN Specialized Accelerator

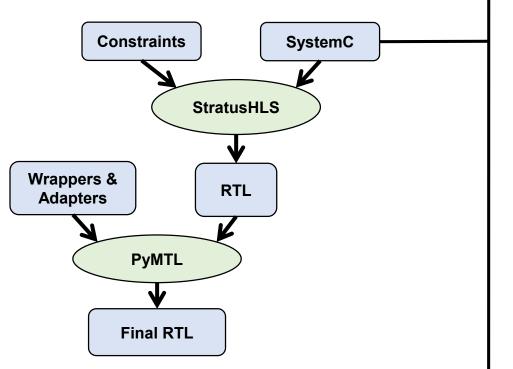


- Accelerator is configured to process a layer through RoCC command messages
- Memory Unit starts streaming the weights into the accelerator and unpacking the binarized weights into appropriate buffers
- 3. Binary convolution compute unit processes input activations and weights to produce output activations



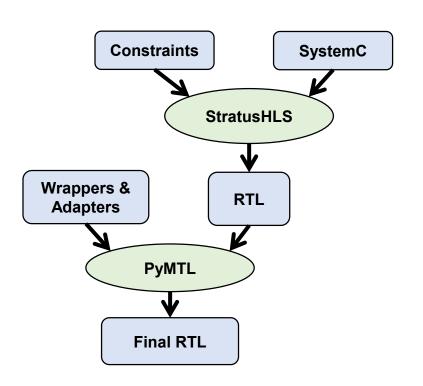
- Accelerator is configured to process a layer through RoCC command messages
- Memory Unit starts streaming the weights into the accelerator and unpacking the binarized weights into appropriate buffers
- Binary convolution compute unit processes input activations and weights to produce output activations

Step 2: Application to Accelerator **Design Methodology**



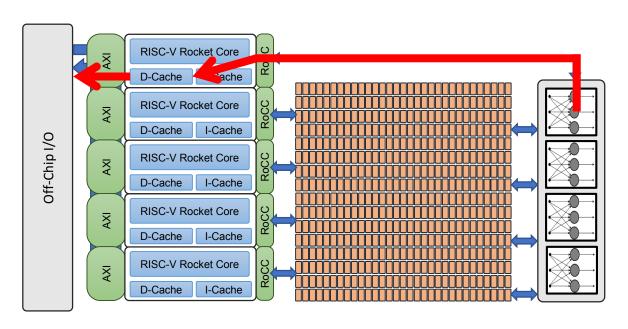
```
void bnn::dma req() {
 while(1) {
 DmaMsg msg = dma req.get();
 for ( int i = 0; i < msq.len; i++ ) {
  HLS PIPELINE LOOP ( HARD STALL, 1 );
  int req type = 0;
  word t data = 0;
  addr t addr = msq.base + i*8;
  if ( type == DMA TYPE WRITE ) {
   data = msg.data;
    req type = MemReqMsg::WRITE;
   } else {
   req type = MemReqMsg::READ;
  memreq.put(MemReqMsg(req type,addr,data));
 dma resp.put(DMA REQ DONE);
```

Design Methodology



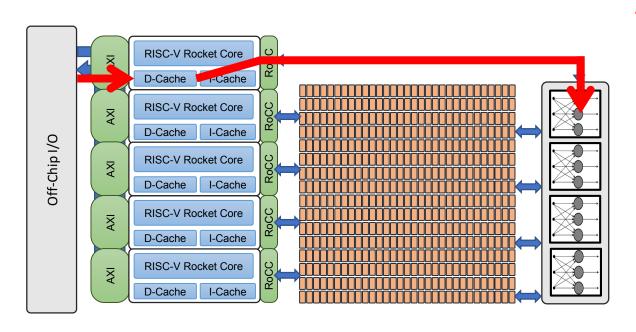
- HLS enabled quick implementation of an accelerator for an emerging algorithm
 - Algorithm to initial accelerator in weeks
 - Rapid design-space exploration
- HLS greatly simplified timing closure
 - Improved clock frequency by 43% in few days
 - Easily mitigated long paths at the interfaces with latency insensitive interfaces and pipeline register insertion
- HLS tools are still evolving
 - Six weeks to debug tool bug with datadependent access to multi-dimensional arrays

General-Purpose Tier for Weight Storage



 The BNN specialized accelerator can use one of the Rocket cores' caches to load every layer's weights; but, it is inefficient due to off-chip traffic

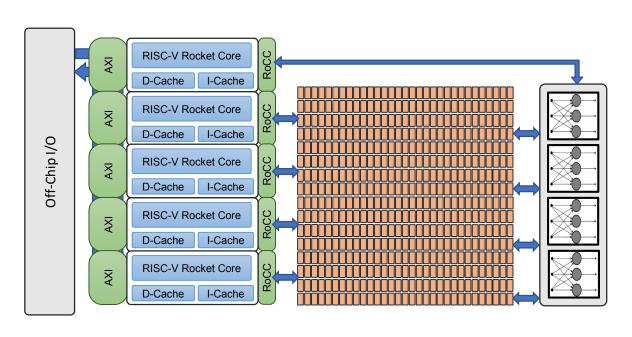
General-Purpose Tier for Weight Storage



 The BNN specialized accelerator can use one of the Rocket cores' caches to load every layer's weights; but, it is inefficient due to off-chip traffic

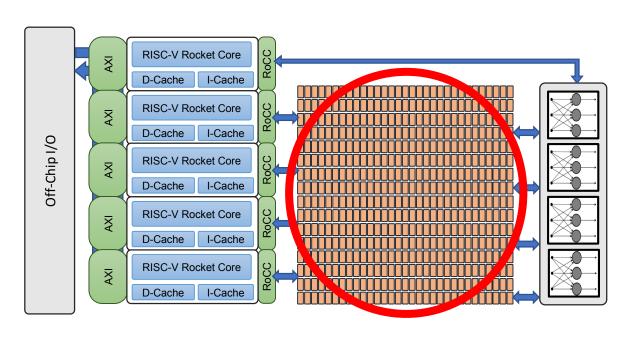
Step 2: Application to Accelerator

General-Purpose Tier for Weight Storage

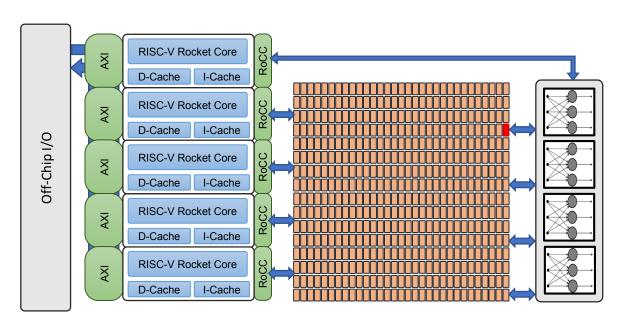


- The BNN specialized accelerator can use one of the Rocket cores' caches to load every layer's weights; but, it is inefficient due to off-chip traffic
- A large L2 or more storage in the BNN specialized accelerator could improve performance

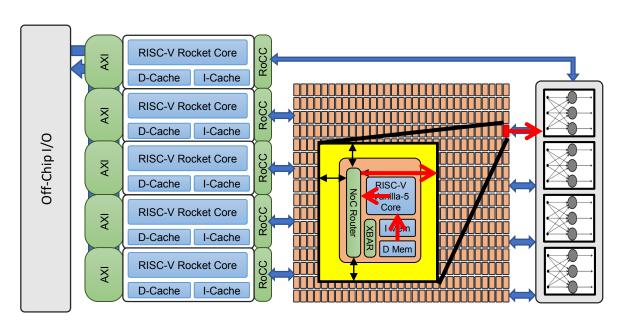
General-Purpose Tier for Weight Storage



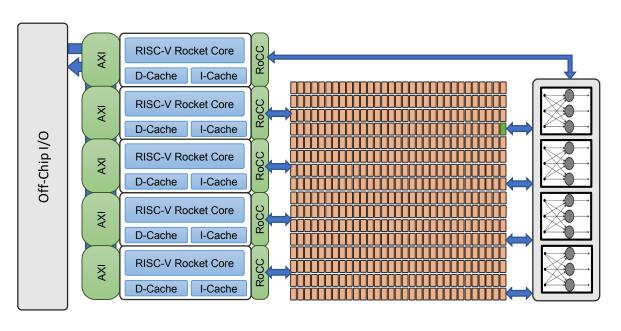
- The BNN specialized accelerator can use one of the Rocket cores' caches to load every layer's weights; but, it is inefficient due to off-chip traffic
- A large L2 or more storage in the BNN specialized accelerator could improve performance
- Instead, weights can be stored in the massively parallel tier



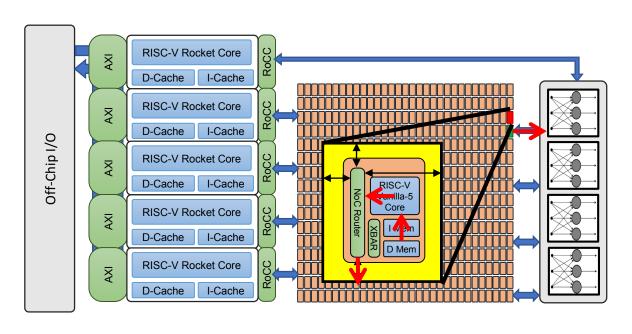
- The BNN specialized accelerator can use one of the Rocket cores' caches to load every layer's weights; but, it is inefficient due to off-chip traffic
- A large L2 or more storage in the BNN specialized accelerator could improve performance
- Instead, weights can be stored in the massively parallel tier
- Each core in the massively parallel tier executes a remoteload-store program to orchestrate sending weights to the specialization tier via a hardware FIFO



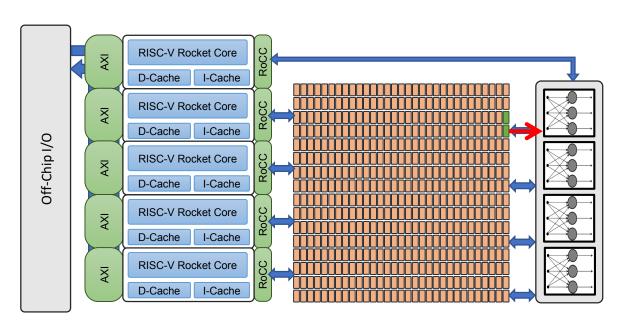
- The BNN specialized accelerator can use one of the Rocket cores' caches to load every layer's weights; but, it is inefficient due to off-chip traffic
- A large L2 or more storage in the BNN specialized accelerator could improve performance
- Instead, weights can be stored in the massively parallel tier
- Each core in the massively parallel tier executes a remoteload-store program to orchestrate sending weights to the specialization tier via a hardware FIFO



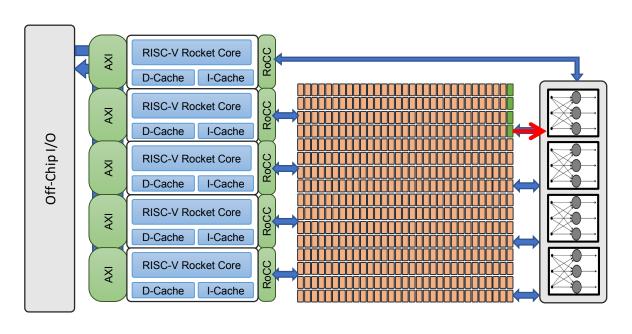
- The BNN specialized accelerator can use one of the Rocket cores' caches to load every layer's weights; but, it is inefficient due to off-chip traffic
- A large L2 or more storage in the BNN specialized accelerator could improve performance
- Instead, weights can be stored in the massively parallel tier
- Each core in the massively parallel tier executes a remoteload-store program to orchestrate sending weights to the specialization tier via a hardware FIFO



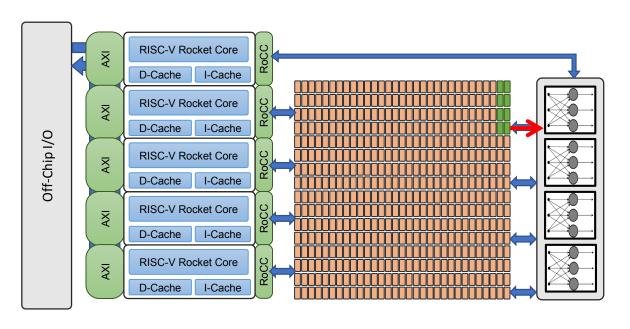
- The BNN specialized accelerator can use one of the Rocket cores' caches to load every layer's weights; but, it is inefficient due to off-chip traffic
- A large L2 or more storage in the BNN specialized accelerator could improve performance
- Instead, weights can be stored in the massively parallel tier
- Each core in the massively parallel tier executes a remoteload-store program to orchestrate sending weights to the specialization tier via a hardware FIFO



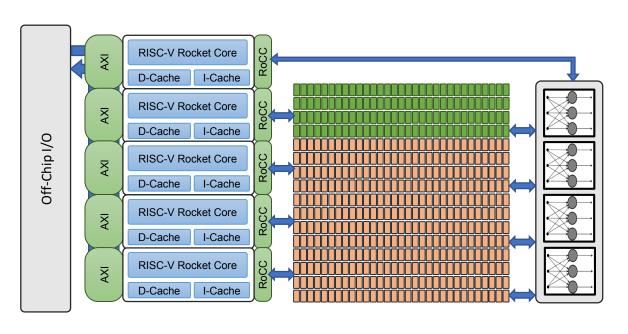
- The BNN specialized accelerator can use one of the Rocket cores' caches to load every layer's weights; but, it is inefficient due to off-chip traffic
- A large L2 or more storage in the BNN specialized accelerator could improve performance
- Instead, weights can be stored in the massively parallel tier
- Each core in the massively parallel tier executes a remoteload-store program to orchestrate sending weights to the specialization tier via a hardware FIFO



- The BNN specialized accelerator can use one of the Rocket cores' caches to load every layer's weights; but, it is inefficient due to off-chip traffic
- A large L2 or more storage in the BNN specialized accelerator could improve performance
- Instead, weights can be stored in the massively parallel tier
- Each core in the massively parallel tier executes a remoteload-store program to orchestrate sending weights to the specialization tier via a hardware FIFO



- The BNN specialized accelerator can use one of the Rocket cores' caches to load every layer's weights; but, it is inefficient due to off-chip traffic
- A large L2 or more storage in the BNN specialized accelerator could improve performance
- Instead, weights can be stored in the massively parallel tier
- Each core in the massively parallel tier executes a remoteload-store program to orchestrate sending weights to the specialization tier via a hardware FIFO



- The BNN specialized accelerator can use one of the Rocket cores' caches to load every layer's weights; but, it is inefficient due to off-chip traffic
- A large L2 or more storage in the BNN specialized accelerator could improve performance
- Instead, weights can be stored in the massively parallel tier
- Each core in the massively parallel tier executes a remoteload-store program to orchestrate sending weights to the specialization tier via a hardware FIFO

Performance Benefits of Cooperatively Using the Massively Parallel and the Specialization Tiers

	General-Purpose Tier	Specialization Tier	Specialization + Massively Parallel Tiers
Runtime per Image (ms)	4,024	5.8	3.3
Speedup	1x	~700x	~1,220x

General-Purpose Tier	Software implementation assuming ideal performance estimated with an optimistic one instruction per cycle
Specialization Tier	Full-system RTL simulation of the BNN specialized accelerator running with a frequency of 625 MHz
Specialization + Massively Parallel Tiers	Full-system RTL simulation of the BNN specialized accelerator with the weights being streamed from the manycore

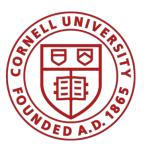
Celerity Overview

Tiered Accelerator Fabric

Case Study: Mapping Flexible Image Recognition to a Tiered Accelerator Fabric

Meeting Aggressive Time Schedule

Conclusion



How to make a complex SoC?

- Reuse
 - Open-source and third-party IP
 - Extensible and parameterizable designs
- Modularize
 - Agile design and development
 - Early interface specification
- Automate
 - Abstracted implementation and testing flows
 - Highly automated design

- Reuse
 - Open-source and third-party IP
 - Extensible and parameterizable designs
- Modularize
 - Agile design and development
 - Early interface specification
- Automate
 - Abstracted implementation and testing flows
 - Highly automated design

- Reuse
 - Open-source and third-party IP
 - Extensible and parameterizable designs
- Modularize
 - Agile design and development
 - Early interface specification
- Automate
 - Abstracted implementation and testing flows
 - Highly automated design

- Reuse
 - Open-source and third-party IP
 - Extensible and parameterizable designs
- Modularize
 - Agile design and development
 - Early interface specification
- Automate
 - Abstracted implementation and testing flows
 - Highly automated design

Reuse

Open-source and third-party IP

• Extensible and parameterizable designs

Modularize

- Agile design and development
- Early interface specification

- Abstracted implementation and testing flows
- Highly automated design

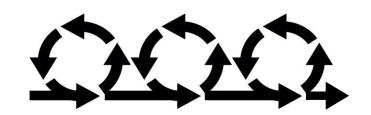
- Reuse
 - Open-source and third-party IP
 - Extensible and parameterizable designs
- Modularize
 - Agile design and development
 - Early interface specification
- Automate
 - Abstracted implementation and testing flows
 - Highly automated design

Reuse

- Basejump: Open-source polymorphic HW components
 - Design libraries: BSG IP Cores, BGA Package, I/O Pad Ring
 - Test infrastructure: Double Trouble PCB, Real Trouble PCB
 - Available at <u>bjump.org</u>
- RISC-V: Open-source ISA
 - Rocket core: high performance RV64G in-order core
 - Vanilla-V: high efficiency RV32IM in-order core
- RoCC: Open-source on-chip interconnect
 - Common interface to connect all 3 compute tiers
- Extensible designs
 - BSG Manycore: fully parameterized RTL and APR scripts
- Third Party IP
 - ARM Standard Cells, I/O cells, RF/SRAM generators

Modularize

- Agile design
 - Hierarchical design to reduce tool time
 - Optimize designs at the component level
 - Black-box designs for use across teams
 - SCRUM-like task management
 - Sprinting to "tape-ins"
- Establish interfaces early
 - Establish design interfaces early (RoCC, Basejump)
 - Use latency-insensitive interfaces to remove crossmodule timing dependencies
 - Identify specific deliverables between different teams (esp. analog→digital)



- Abstract implementation and testing flows
 - Develop implementation flow adaptable to arbitrary designs
 - Use validated IP components to focus only on integration testing
 - Use high-level testing abstractions to speed up test development (PyMTL)
- Automate design using tools
 - Use High-Level Synthesis to speed up designspace exploration and implementation
 - Use digital design flow to create traditionally analog components

Synthesizable PLL

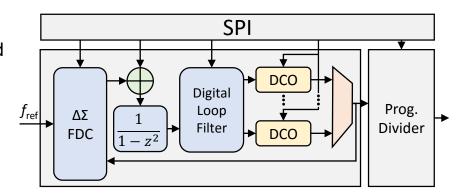
Reuse

 Interfaces and some components reused from previous designs

Modularize

- Controlled via SPI-like interface
- Isolated voltage domain for all 3 PLLs to remove power rail noise

- Fully synthesized using digital standard cells
- Manual placement of ring oscillators, auto-placement of other logic
- Very easy to create additional DCOs that cover additional frequency ranges



Area	0.0059 mm ²
Frequency range*	20 - 3000 MHz
Frequency step*	2%
Period jitter*	2.5 ps

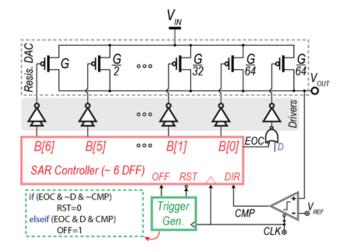
^{*} Collected via SPICF on extracted netlist

Synthesizable LDO

Reuse

 Taped out and tested in 65nm [5], waiting on 16nm results

- Fully synthesized controller
- Custom power switching transistors
- Post-silicon tunable
- Compared to conventional N-bit digital LDOs:
 - 2^N/N times smaller
 - 2^N/N times faster
 - 2^N times lower power
 - 2^{2N}/N better FoM



Controller Area	< 0.0023 mm ²
Decap Area	< 0.0741 mm ²
Voltage Range	0.45 – 0.85 V
Peak Efficiency	> 99.8 %

Celerity Overview

Tiered Accelerator Fabric

Case Study: Mapping Flexible Image Recognition to a Tiered Accelerator Fabric

Meeting Aggressive Time Schedule

Conclusion



Conclusion

 Tiered accelerator fabric: an architectural template for embedded workloads that enable performance gains and energy savings without sacrificing programmability

- Celerity: a case study for accelerating low-latency, flexible image recognition using a binarized neural network that illustrates the potential for tiered accelerator fabrics
- Reuse, modularization, and automation enabled an academic-only group to tape out a 16nm ASIC with 511 RISC-V cores and a specialized binarized neural network accelerator in only 9 months

Acknowledgements

This work was funded by DARPA under the Circuit Realization At Faster Timescales (CRAFT) program

Special thanks to Dr. Linton Salmon for program support and coordination